Rigid transformations

Student Activity Sheet 2; use with Exploring "Translations and reflections"

Triangle A"B"C" is the composition of two reflections of \triangle ABC across m_1 and m_2 . Using this information and the diagram below, answer questions 10-14.

10. How do the size and shape of $\Delta A''B''C''$ compare with those of ΔABC ? [EX1, page 9]

The triangles have the same size and shape.

11. What do your measurements tell you about the reflected images A", B", and C" of the vertices A, B, and C? [EX1, page 9]

The measurements should show that the images moved the same distance. In other words, $\triangle ABC$ moved a fixed distance with no change in orientation.

12. How does the fixed distance between pre-images A, B, and C and images A", B" and C" compare with the distance between the parallel lines? [EX1, page 9]

The translation distance is twice the distance between the parallel lines.

Rigid transformations

Student Activity Sheet 2; use with Exploring "Translations and reflections"

13. Fill in the blanks to complete the following statement. [EX1, page 10]

A translation of a shape is a composition of two reflections across parallel lines.

14. **REINFORCE** In the diagram on the previous page, AA'' = (3x - 9) millimeters and the distance between lines m_1 and m_2 is 6 millimeters. Solve for x.

The distance between $\bf A$ and $\bf A''$ is twice the distance between the two lines of reflection.

$$3x - 9 = 2(6)$$

$$3x - 9 = 12$$

$$3x = 21$$