West Linn-Wilsonville School District

Mathematics – Course Statement

Course Title: Discrete Mathematics

Length of Course: Year **Number of Credits: Grade Level:**

10, 11, 12

Prerequisites: Advanced Algebra

Date of Description/Revision: 2013

Course Overview

This course is an advanced mathematics course designed to explore a variety of topics. Topics include, but are not limited to: optimization, probability, combinations, graph theory and discrete mathematics.

Essential Questions

Concepts providing focus for student learning

- How can you model the physical, political, social etc. world with discrete mathematics?
- How can you use the computer to model the world with a computer?
- What is graph theory and how do we use it to model the world?
- How is probability used to model events in the world?

Common Core Standards For Mathematical Practice

Students will develop the following practices throughout the course:

- Make sense of problems and persevere in solving them.
- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- Model with mathematics.
- Use appropriate tools strategically.
- Attend to precision
- Look for make use of structure.
- Look for and express regularity in repeated reasoning.

Proficiency Statements

Upon completion of course, students will be able to:

- Represent problem situations using discrete structures such as finite graphs, matrices, sequences, and recurrence relations.
- Represent and analyze finite graphs using matrices.
- Develop and analyze algorithms.
- Solve enumeration and finite probability problems.
- Represent and solve problems using linear programming and difference equations.
- Investigate problem situations that arise in connection with computer validation and the application of algorithms.
- Use the computer to model various ideas such as traffic flow.
- Compete in the COMAP modeling contest.

West Linn-Wilsonville School District

Mathematics - Course Statement

General Course Topics/Units & Timeframes

- A. Election theory
 - Group-ranking methods and algorithms
 - More group-ranking methods and paradoxes
 - Arrow's Conditions and approval voting
 - Weighted voting and voting power
 - Proportional representation
- B. Fair division
 - Estate division
 - Apportionment algorithms
 - Fair division algorithms: the continuous case
 - Mathematical induction
 - Envy-free division
- C. Matrix operations and applications
 - Addition and Subtraction of Matrices
 - Multiplication of Matrices
 - Population Growth: The Leslie Model 1
- D. Probability
 - Multiplication Rule
 - Permutations and combinations with compound events
 - Calculate expected values
 - Evaluate outcomes of decisions
- E. Graphs and their applications
 - Critical paths
 - Vocabulary and representations of graphs
 - Euler circuits and paths
 - Hamiltonian circuits and paths
 - Graph coloring
 - Eulerizing graphs
 - Planarity and coloring
 - The Traveling Salesperson Problem
 - Shortest route problems
 - Trees and their properties
 - Minimum spanning trees
 - Binary trees, expression trees, and traversals
 - Steiner Trees
 - Counting and probability
 - Monte Carlo methods

Resources

• Text: Thinking Mathematically, Fifth Edition, Blitzer, Pearson Prentice Hall, 2010