Topic: Moles and Chemical Quantities

Guiding Question: How can we count chemical quantities to make comparisons? **Purpose:** To visualize and understand a mole.

Key Vocabulary: Avogadro's number, mole, particles, atoms, conversion, ratio

Part 1: Avogadro's Number

Watch this 5 minute video:

https://ed.ted.com/lessons/daniel-dulek-how-big-is-a-mole-not-the-animal-the-other-one

- 1.) What is a mole?
- 2.) How many particles are in a mole?
- 3.) Why do you think Chemists use the mole?

Part 2: Moles, Particles, and Grams

Show your work and convert from grams to moles to particles (molecules or atoms).

	Grams	Moles	Particles
Manganese Dioxide (MnO ₂)			
Sulfur (S)			

Tin (Sn)		
Water (H ₂ O)		
Lithium Carbonate (Li ₂ CO ₃)		

2.) What do the samples below have in common? Show your work.

Part 3: In A Reaction

A.)

Iron (Fe) reacts with Oxygen gas (O_2) to form Iron Oxide (Fe₂O₃), known as rust.

- 1.) Balance the equation to determine the coefficients and mole ratios.
- 2.) Watch the video: <u>https://www.youtube.com/watch?v=TsnLmgWXw-E</u>
- 3.) Determine the initial amount of Fe used.
- 4.) Determine the final amount of Iron Oxide produced.
- 5.) Based on the coefficients, determine the amount of O_2 used.
- 6.) Determine the individual atoms and molecules of each reactant and product.

Fe	O ₂	>	Fe ₂ O ₃
Coefficient:	Coefficient:		Coefficient:
Grams:	Grams:		Grams:
Moles:	Moles:		Moles:
Atoms:	Molecules:		Molecules:

B.)

Potassium (K) reacts with Chlorine gas (Cl2) to form Potassium Chloride (KCl)

- 1.) Balance the equation to determine the coefficients and mole ratios.
- 2.) Determine the initial amount of Potassium used.
- 3.) Determine the final amount of KCI produced, assuming an abundant supply of Cl₂.
- 4.) Based on the coefficients, determine the amount of Cl_2 used.
- 5.) Determine the individual atoms and molecules of each reactant and product.

10.00 grams of Potassium			
_к		>	_ксі
Coefficient:	Coefficient:		Coefficient:
Grams:	Grams:		Grams:
Moles:	Moles:		Moles:
Atoms:	Molecules:		Molecules:

Reflection:

- 1.) In 3-5 sentences explain how you can convert from one unit to the next.
- 2.) Using the tools and methods we have discussed in class convert the following:
 - a.) 100 dollars to dimes
 - b.) 10 days to seconds
 - c.) 25 miles to inches
 - d.) Your own example.
- 3.) Explain how you can use the tools from chemistry to apply to your life.
- 4.) Make a poster on a piece of notebook paper about the mole
 - a.) Include the number of particles in a mole
 - b.) A visual representation of a mole
 - c.) How to convert from grams to moles
 - d.) How to convert from moles to grams
 - e.) How to convert from moles to particles
 - f.) Be creative!