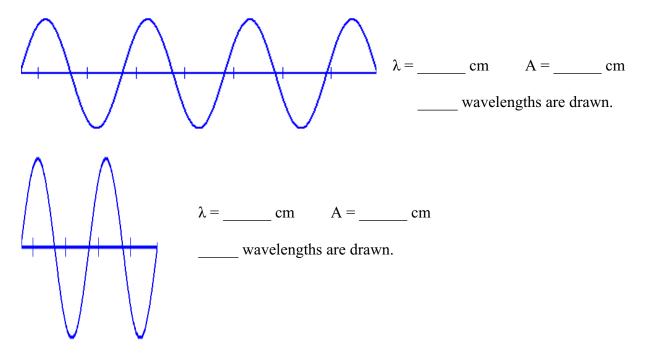
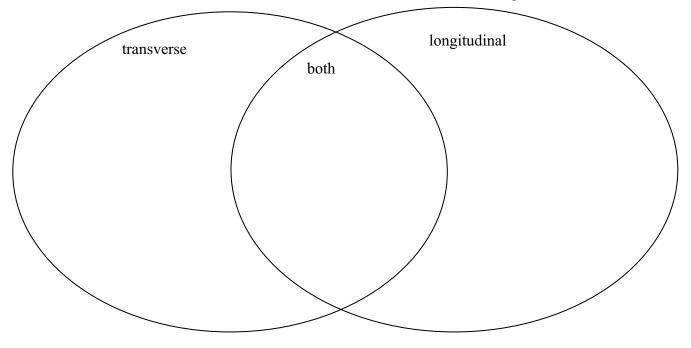
Wave F DAL 03/26/14 Guide	Name	Period
1. Waves are disturbances which	move through space, carrying	from one place to another.
	ysical substance, known as a so called a	, but light waves can
3. The two major types of waves a known as compressional.	are, a	and, also
4. In a way	To and Fro Motion of Air	
, and w wavelength is the distance betw On the diagram above, la 5. In a angles to the direction the wave	where the particles are spread apa ween adjacent compressions, or l abel every compression with a wave, such as the wave of e moves. Here, if the wave is m and The higher	articles are squeezed together are art are The between adjacent rarefactions. C, and every rarefaction with an R . drawn below, the particles move at right oving to the right, the particles in the st points are called and
Period = the time from one wave		
Ex: Period = 3.2 sec or $\tau = 0.2$	25 sec (τ = Greek letter "tau")	
Frequency = the number of wave	es (or cycles) per second:	
Ex: f = 60 waves/2 seconds = 30 ("Hertz" just translates as	Amplitude : the maximum distance a particle moves from	
Frequency = 1 / Period Period = 1/ frequency (they are	e <u>reciprocals</u>)	<i>equilibrium</i> , or the middle position.
Amplitude is the maximum displa	acement from equilibrium.	
Velocity = Speed at which a wave	e pulse travels along the medium	n. Ex: $v = 340 \text{ m/s}$
		1.05


Wavelength = Distance between two identical parts of a wave: Ex: $\lambda = 125$ cm = 1.25 m λ is "lambda", the greek letter used to represent wavelength.

Wavelength can be from crest to crest, or trough to trough, or any other set of matching points. For more precision, measure multiple wavelengths, and divide to find the average.

6. On each wave diagram on this page, draw a double-ended arrow to label the wavelength, " λ ".


Velocity = Wavelength · Frequency Velocity = Wavelength / Period

- 7. Machine A makes waves at a rate of 420 per minute. The frequency equals ______, and the period equals ______.
- 8. A student measures waves on a pond which pass by at the rate of 30 per minute. The distance between crests is 2.5 meters, and the vertical difference between crests and troughs is 12 cm. PAY ATTENTION TO THE UNITS!
 - a) The frequency is ______ Hertz b) The period is ______ seconds.
 - c) The wavelength is _____ meters d) The amplitude is _____ meters.
 - e) Using the velocity formula $v = \lambda f$, calculate the speed of the waves in meters per second.
- 9. For each of the waves below, measure the wavelength and amplitude, to the nearest 0.1 cm.

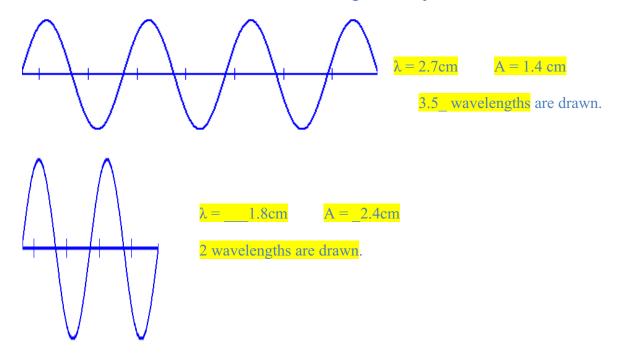
10. On the table below, which has grid spacing of 1.0 cm and 0.5 cm, draw two wavelengths of a wave which has an amplitude of 1.5 cm, and a wavelength of 8.0 cm.

11. Describe the similarities and differences between transverse waves and longitudinal waves.

12. Explain why sound and other longitudinal waves can't travel through outer space.

- 13. A machine which shakes a wire to make waves is made to run at a higher and higher frequency.a) What happens to the period, the time between each wave, as the machine is made to run faster?
 - b) What happens to the velocity of the wave on the wire?
 - c) Solve the wave equation for wavelength. Then explain in words the relationship between wavelength and frequency, assuming velocity is constant.
 - d) What happens to the wavelength as the frequency increases?

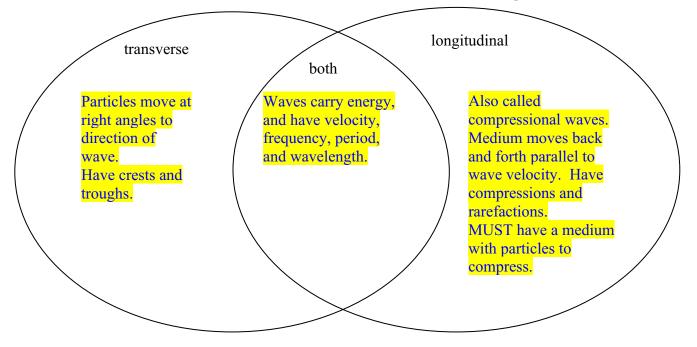
Wave C DAL 03/26/14 Guid	le Name	Period							
1. Waves are disturbances wh	. Waves are disturbances which move through space, carrying <u>energy</u> from one place to another.								
2. Most waves must travel in through empty space, also		as a _ <mark>medium</mark> , but light waves can travel							
3. The two major types of wa compressional.	ves are <u>transverse</u> , and	longitudinal, also known as							
	To and Fro Mot	tion of Air Molecules Direction of Propagation							
wave moves. In longitudin <u>compressions</u> , and wavelength is the distance	hal waves, where the particle where the particles are spre between adjacent compression	es move back and forth along the direction the es are squeezed together are ead apart are <u>rarefactions</u> . The ions, or between adjacent rarefactions. a with a C, and every rarefaction with an R.							
the direction the wave mov	ves. Here, if the wave is mo	wn below, the particles move at right angles to ving to the right, the particles in the medium will nts are called <u>crests</u> and the lowest points							
Period = the time from one w	vave (cycle) to the next.								
Ex: Period = 3.2 sec or $\tau = 0.25$ sec ($\tau =$ Greek letter "tau")									
Frequency = the number of w Ex: f = 60 waves/2 seconds ("Hertz" just translate	т — т								
Frequency = 1 / Period Period = 1/ frequency (the	y are <u>reciprocals</u>)	<i>equilibrium</i> , or the middle position.							
Amplitude is the maximum of	lisplacement from equilibriu	<u>m</u>							
Velocity = Speed at which a v	wave pulse travels along the	medium. Ex: $v = 340 \text{ m/s}$							
8	een two identical parts of a tter used to represent wavele	wave: Ex: $\lambda = 125 \text{ cm} = 1.25 \text{ m}$ ength.							
0	rest to crest, or trough to tro re multiple wavelengths, and	ugh, or any other set of matching points. d divide to find the average.							


6. On each wave diagram on this page, draw a double-ended arrow to label the wavelength, " λ ".

Velocity = Wavelength · Frequency

Velocity = Wavelength / Period

- 7. Machine A makes waves at a rate of 420 per minute. The frequency equals 420/60s = 7.0 Hz, and the period equals 60s/420 = 0.14s.
- 8. A student measures waves on a pond which pass by at the rate of 30 per minute. The distance between crests is 2.5 meters, and the vertical difference between crests and troughs is 12 cm. PAY ATTENTION TO THE UNITS!
 - a) The frequency is <u>30/60s = 0.5</u> Hertz
 b) The period is <u>60s/30 = 2.0</u> seconds.
 c) The wavelength is <u>2.5</u> meters
 d) The amplitude is <u>12cm/2 = 6cm = 0.06 meters</u>.
 e) Using the velocity formula v = λf, calculate the speed of the waves in meters per second.
- 9. For each of the waves below, measure the wavelength and amplitude, to the nearest 0.1 cm.


v = (2.5m)(0.5 Hz) = 1.25 m/s

10. On the table below, which has grid spacing of 1.0 cm and 0.5 cm, draw two wavelengths of a wave which has an amplitude of 1.5 cm, and a wavelength of 8.0 cm.

11. Describe the similarities and differences between transverse waves and longitudinal waves.

12. Explain why sound and other longitudinal waves can't travel through outer space.

Longitudinal waves must have a medium so there is matter to compress and rarefy. In outer space, there are no particles, so there is nothing to compress.

- 13. A machine which shakes a wire to make waves is made to run at a higher and higher frequency. a) What happens to the period, the time between each wave, as the machine is made to run faster? The period gets shorter as the frequency increases.
 - b) What happens to the velocity of the wave on the wire? The velocity stays the same, because the speed of the wave depends on the density of the wire, and the tension in the wire.
 - c) Solve the wave equation for wavelength. Then explain in words the relationship between wavelength and frequency, assuming velocity is constant.

 $\lambda = \frac{\nu}{r}$ Wavelength is inversely proportional to frequency.

d) What happens to the wavelength as the frequency increases?

As frequency increases, wavelength decreases, although it will never reach zero.