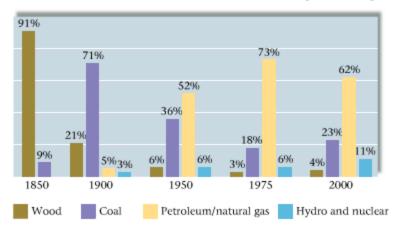

Energy



Using Energy in the Real World

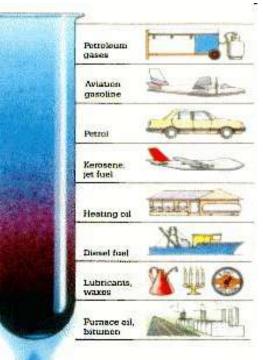
 Fossil fuel → fuel that consists of carbonbased molecules derived from the decomposition of once-living organisms.

• The U.S.'s heavy dependence on petroleum for energy is a relatively recent phenomenon.

Petroleum and Natural Gas

- Most likely formed from the remains of marine organisms that lived approximately 500 million years ago.
- Petroleum → a thick, dark liquid composed mostly of hydrocarbon compounds (contain carbon and hydrogen).

Names and Formulas					
for Some Common					
Hydrocar	bons				
Formula	Name				
CH ₄	Methane				
C_2H_6	Ethane				
C ₃ H ₈	Propane				


Table 10.2

C4H10 Butane C5H12 Pentane C6H14 Hexane C7H16 Heptane C₈H₁₈

Octane

- Natural gas → a gaseous fossil fuel, mostly consisting of methane (with some ethane, propane, and butane) and usually associated with petroleum deposits.
- Petroleum must be separated into fractions by boiling.
- The lighter molecules (lowest BP) can be boiled off, leaving the heavier ones behind.

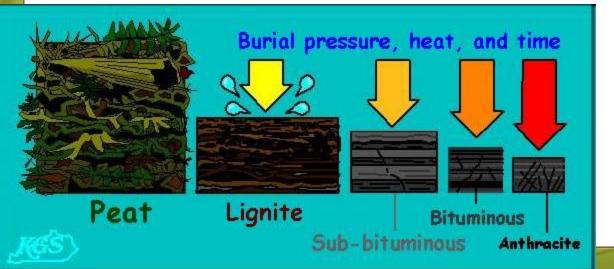
- The commercial uses of various petroleum fractions:
- Uses of the Various

Table 10.3

Petroleum Fractions

Petroleum Fraction in Terms of Numbers of Carbon Atoms	Major Uses	
$C_{5}-C_{10}$	Gasoline	
C ₁₀ -C ₁₈	Kerosene Jet fuel	
C ₁₅ -C ₂₅	Diesel fuel Heating oil Lubricating oil	
>C ₂₅	Asphalt	

- Coal
- Coal → a solid fossil fuel mostly consisting of carbon.
- Formed from the remains of plants that were buried and subjected to high pressure and heat over long periods of time.



- Coal "matures" through 4 stages:
 - Lignite
 - Subbituminous
 - Bituminous
 - Anthracite

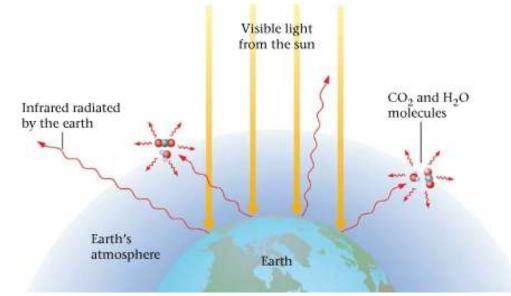
Table 10.4

Element Composition of Various Types of Coal

Mass Percent of Each Element					
c	н	0	N	s	
71	4	23	1	1	
77	5	16	1	1	
80	6	8	1	5	
92	3	3	1	1	
	c 71 77 80	C H 71 4 77 5 80 6	CHO71423775168068	CHON71423177516180681	

The relative carbon content gradually increases.

- The energy available from the combustion of a given mass of coal increases as the C content increases.
- So, which type of coal gives the most energy and is the most valuable?
 - Anthracite is the most valuable coal, and lignite is the least valuable.
- Coal currently supplies approximately 20% of our energy.


- Coal has variable composition depending on its age and location.
- Coal is expensive and dangerous to mine underground, and strip-mining causes problems as well.
- Burning coal, especially high-sulfur coal, produces pollutants such as SO₂, which can lead to acid rain.

Effects of Carbon Dioxide on Climate

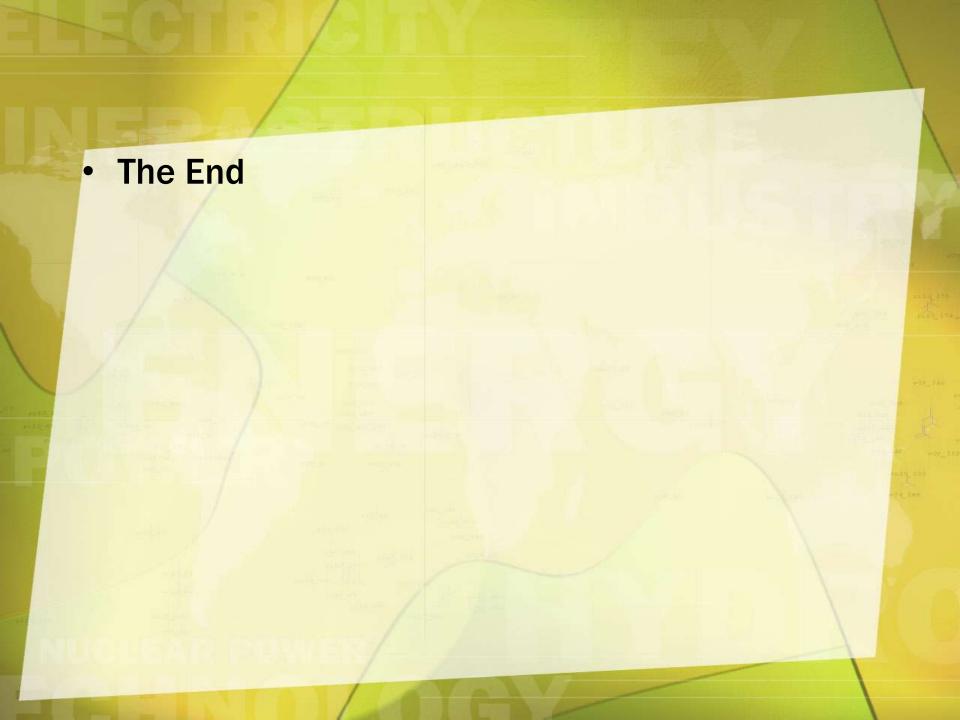
- The earth receives radiant energy from the sun.
- About 30% of the radiant energy from the sun is reflected back into space by the earth's surface.
 - The remaining energy passes through the atmosphere to the earth's surface.
 - Some is absorbed by plants for photosynthesis and oceans to evaporate water.
 - Most is absorbed by soil, rocks, and water, increasing the temperature of the earth's surface.

- The energy from the earth's surface is then radiated as *infrared radiation* (*heat radiation*).
 Greenhouse Effect
- The atmosphere does not allow all the infrared radiation to pass back into space.

- Molecules in the atmosphere (H₂O and CO₂) strongly absorb infrared radiation and radiate it back toward the earth.
- Greenhouse effect → the process by which an atmosphere warms a planet.

Atmospheric CO₂

 As fossil fuels have been used more extensively, the CO₂ concentration has increased (up about 20% since 1880).



- If the CO² content in the atmosphere continues to rise, this trend *could* increase the earth's average temperature, causing dramatic changes in climate.
- The exact relationship between the CO₂ concentration in the atmosphere and the earth's temperature is not known at present.

New Energy Sources

- We need to consider economic, climatic, and supply factors as we search for energy sources in the future.
- Potential energy sources:
 - The sun (solar),
 - Nuclear processes (fission and fusion),
 - Biomass (plants),
 - Wind,
 - And synthetic fuels.

