
Chemical Quantities (Stoichiometry)

9.2 A

Using Chemical Equations Moles to Moles

9.2 Using Balanced Chemical Equations

Objective

To learn to relate ratios of reactants and products in a chemical reaction

Using Balanced Equations

- Previously, we saw how to use the balanced equation for a reaction is used to understand the numbers of moles, molecules and particles of reactants and products.
- For example in this balanced equation:

$$1_{\text{(understood)}} C_3 H_8 (g) + 5 O_2 (g) \rightarrow 3 CO_2 (g) + 4 H_2 O (g)$$

there is 1 mole/molecule of C₃H_{8 used} there are 5 moles/molecules O_{2 used} there are 3 moles/molecules CO_{2 produced} there are 4 moles/molecules H₂O produced

So,if you have 5 moles of \mathcal{O}_2 you will always produce 4 moles of \mathcal{H}_2 \mathcal{O}

Or, if you have 1 molecules of C_3H_8 you will always produce 3 molecules of CO_2

Using Balanced Equations

- We can also use the balanced equation to calculate number of moles used or produced when the moles available change.
- For example: If we have 8 moles of O₂ available instead of just 5, how many moles of H₂O would be produced?
- ► $1C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$
- We use **mole ratios** to determine that.
- We just look at the ratio between O_2 and H_2 $O_2 = 5 O_2 : 4 H_2 O_2$
- We have to create an equation that solves this problem
- Start with what you are given: 8 moles of O2

Moles to Moles

- Continued...
- ▶ If we have 8 moles of O₂ available instead of just 5, how many moles of H₂O would be produced?
- ► $1C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$
- We have to create an equation that solves this problem and uses the ratio $5O_2:4H_2O$
- > Start with what you are given: 8 moles of O2

```
8 moles O_2 x \frac{4 \text{moles } H_2 O}{5} = \frac{8 \times 4 \text{ moles } H_2 O}{5} = \frac{32 \text{ moles } H_2 O}{5} = \frac{6.4 \text{ moles } H_2 O}{5}
```

Continued...For example: If we have 8 moles of O_2 available instead of just 5, how many moles of H_2O would be produced? $1C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$

- Start with what you are given: 8 moles of O2
- ▶ 8moles O₂
- Then use the ratio from the balanced equation $5O_2:4H_2O$ but you want to cancel the moles $O_2:4H_2O$ but you want to cancel the moles

- 8 moles O_2 x 4moles H_2O = 8×4 moles H_2O 5 moles O_2 5 moles
- Calculate
- $8 \times 4 \text{ moles H}_2O = 32 \text{ moles H}_2O = 6.4 \text{ moles H}_2O$
- The whole equation will look like this:
- 8 moles O_2 x $\frac{4 \text{moles H}_2O}{5 \text{ moles O}_2} = \frac{8 \times 4 \text{ moles H}_2O}{5 \text{ moles O}_2} = \frac{32 \text{ moles H}_2O}{5} = \frac{6.4 \text{ moles H}_2O}{5}$

Another example

If we have 5 moles of C_3H_8 available, how many moles of CO_2 can be produced?

$$1$$
C₃H ₈ (g) + $5O_2$ (g) $\rightarrow 3$ CO₂ (g) + $4H_2$ O (g)

- Step 1 find the mole ratio between C_3H_8 and CO_2 from the balanced equation 1C_3H_8 : 3CO_2
- Step 2- Start with what is given- 5 moles C₃H₈
- Step 3 Write the equation so you cancel out moles C₃H 8
- 5 moles $C_3H_8 \times 3$ moles $CO_2 = 5$ moles $\times 3$ mol
- Step 4 Calculate = 15moles CO₂ are produced from 5 moles of C₃H₀
- Step 5 rewrite the whole equation:
- 5 moles C₃H₈ x 3 moles CO₂ = 5 moles x 3moles CO₂ = 15moles CO₂ 1 mole C₃H₈ 1 mole

The End