Newton’s Law of Universal Gravitation

The greatest moments in science are when two phenomena that were considered completely separate
suddenly are seen as just two different versions of the same thing. Newton’s explanation that the motion of
the moon around the Earth (and the planets around the sun) and of an apple falling to the ground are two
expressions of the same phenomenon, gravity, represents a wonderful instance of this sort of synthesis.

Newton conjectured that objects near the surface of the Earth fall towards the center of the Earth as a
result of a universal attraction of all matter towards all other matter. He then considered that the circular
motion of the moon around the Earth could then be explained if that same force of gravity were supplying
the force towards the center of the moon’s circular orbit, the Earth. That force of gravity would provide the
unbalanced force necessary for circular motion.

Universal Gravity
Newton postulated that all matter in the universe is attracted to all other matter. He named this force of

attraction “gravity” and he formulated the following expression to describe how the force of gravity
depends on the mass of each object and the distance between their centers.
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In this equation, “G” is a constant that would need to be discovered by experiment, “m;” and “m;” are the
masses of the two objects and “r” is the distance between their centers. It doesn’t matter which mass you
call “m;” and which one you call “m;”: That’s a result of Newton’s third law which states that the force on
one object will be equal in size to the force on the other.

Newton had to invent calculus in order to show that the distance between two
spherical objects, the “r” in his equation, should be measured between the centers of
the objects. He was able to show that spherical objects act, from the perspective of
gravitational force, as if all of their mass were located at a point at their center. As a
result, the distance from a spherical mass, such as the Earth or the sun, must always
be measured from its center.

It took more than a hundred years before Henry Cavendish was able to directly measure the value of “G”.
The modern accepted value of “G” is:
G = 6.67 x 10 -11 N-m2/kg?

Example 1
What is the force between a 5.0kg spherical object and a 10 kg spherical object whose centers are located
2.5m apart?
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Fe=(6.67 x 10 -1t N-m2/kg?)(5.0kg)(10kg)/(2.5m)?
Fec=(6.67 x 10 -11 N-m2/kg?)(5.0kg)(10kg)/(2.5m)>2
Fc=53x10-1°N

This is a very small force...which is why the force of gravity between even large objects in our everyday life
is very small. However it can be large if very large masses are involved. That’s also why scientific notation
is so important in solving problems in this chapter.
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Example 2
What is the average gravitational force between the Earth and the sun? The mass of the Earth is 6.0 x 1024 kg,
the mass of the sun is 2.0 x 103° kg and the average distance between their centers is 1.5 x 1011m.

FG = Gn’hl’l’lz/r2

Fe¢=(6.67 x 10-11 N-m2/kg?)(6.0 x 1024 kg)(2.0 x 103° kg) /(1.5 x 1011m)>2
Fc=36x102IN

Fg = 3.6 x 1022N towards each other’s center

Example 3
What is the distance between two objects whose masses are 28,000 kg and 50,000 kg if the gravitational force
between them is 50N?

FG = Gm1m2/r2
To solve for r, first multiply both side by r2
(FG) (I‘z)= Gmim;
Then divide both sides by F¢
2= Gm1m2/ FG
And take the square root of both sides
r= [Gm1m2/FG) 1/2
Now substitute in the given values and solve

r=((6.67 x 10-11 N-m2/kg?)(2.8 x 10* kg)(5.0 x 104 kg)/(50N))1/2
r=(1.86x103)

r=18.6 x10+4
r=4.3x102m
r=4.3cm
Example 4

The force between two objects of equal mass whose centers are separated by 15cm is 2 x 10+N. What is the
mass of the objects?

FG = Gm1m2/r2
Firstletm = mi=m;

F¢ = Gmm//r2
F¢ = Gm?2/r?
Then multiply both sides by r2 and divide both sides by G
m?2 = (F)(r2) /G
Then take the square root of both sides
m = ((Fe)(r?)/G)1/2
m = (r)(Fe/G)1/2
Substituting the given values
m = (0.15m)((2 x 10*N)/( 6.67 x 10-11 N-m2/kg?))1/2
m = (0.15m)((0.3 x 107 kg2/mz2))1/2
m = (0.15m)((3 x 106 kg2/m2))1/2
m = (0.15m)(1.73 x 103 kg/m)
m=0.26x103kg
m;=m; =260 kg
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Falling apples: The surface gravity of planets
Since Newton was able to show that the gravitational force of a spherical object can be thought of as

emanating from a point at its center, it can be seen that an apple sitting near the surface of the Earth is
actually a great distance from the gravitational center of the Earth. In fact, any object near the surface of
the Earth is always a distance from the Earth’s center given by the radius of the Earth, Re = 6.4 x 106 m.
From this it’s possible to determine the acceleration of all objects near the surface of the Earth.

2F =ma
For an unsupported object of mass “m” near the surface of the Earth, there
will be an unbalanced gravitational force given by F¢ = Gmim;/r?

GMem/Rg? = ma
In this equation, Mg is the mass of the Earth and Rg is its radius, the distance
from the center to the surface of the Earth. Canceling the mass of the
unsupported object (which shows that our result will be independent of

mass)

GME/REZ= a
but this just represents “g”, the acceleration of unsupported objects near the
surface of the Earth. Since we'll be calculating g for other circumstances,
let’s call “g” near the surface of the Earth “gg”

ge = GMg/Rg?

plugging in the currently accepted values for “G” and the mass and radius of
the Earth yields

ge = (6.67 x 10 -11N-m2/kg?) (6.0 x 1024 kg) /(6.4x106m)?
gr =9.8 m/s?

This is the result that had been measured for some time and shows that Newton’s more general Universal
Theory of Gravity is consistent with prior observation. However, there is nothing in that analysis that is
unique to the Earth, except for the figures that we used for the Earth’s mass and radius. The same basic
expression will yield the acceleration of unsupported objects near the surface of any planet.

The acceleration due to gravity of unsupported objects near a planet whose
mass is “M” and whose radius “R” is given by
g=GM/R?

Example 5
Calculate g for Saturn given that the mass of Saturn is 5.7 x 1026 kg and its radius is 6.0 x 107 m.

g =GM/R?

g =(6.67 x 10 -11N-m2/kg?)(5.7 x 1026 kg) /(6.0x107m)?
g=1.05x10'm/s?

Jsaturn = 10.5 m/s?

So while Saturn is much more massive than the Earth, its gravity is only a little larger because of its larger
radius.

Gravitational Field

Especially when thinking about large massive objects likes planets or stars, it's convenient to think of the
force on one object due to the gravitational attraction of another in a slightly different way. We can think of
the first object as creating a “gravitational field” and the other object reacting to that field. This

Universal Gravitation - 3 v1.0 ©2009 by Goodman & Zavorotniy




“«_n

gravitational field is the “g” that we are so familiar with. For instance, we can equally well think of the force
on an object of mass m near the surface of the Earth as being given by
F(; = GMEm/REZ
FG =m (GME/REZ)
or by
F¢ = mg, where g = GMg/Rg?

These describe exactly the same situation, but once you compute g near the Earth as being 9.8 m/s?, it'sa
lot easier to calculate the force of gravity on all objects near the surface of the Earth, their weight, by just

using Fg = mg, rather than going back to the equation F; = GMgm/Rg?, each time.

Looking at it this way, we can think of each object as creating a gravitational field which extends
throughout all locations in space.

Gravitational Field
When a spherical object creates a gravitational field, the size of the field at a particular
location in space is given by
g=GM/r2
where M is the mass of the object creating the field and r is the distance from that object’s
center. The units of gravitational field are acceleration, m/s2.

The direction of the gravitational field is the direction that a small test mass would move if placed in that
location, towards the center of the spherical object creating the field. The illustration shown below
describes the gravitational field of a spherical object, for instance a planet. The direction of the arrows
shows the direction of the gravitational field, while their length shows the relative size of the field. Notice

that the field gets weaker with increasing distance and that it always points towards the center of the
planet.

/
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In the case of the gravitational field of the Earth, its direction will always point towards the center of the
Earth. Atlocations that are on the surface of the Earth, the magnitude of the field is 9.8 m/s2. However,
since the field will fall off as 1/r?, it will diminish at distances above the surface of the Earth.

Example 6
What is the gravitational field of the Earth at a distance of 8.0 x 106 m above its surface?

The first step in any problem like this is to figure out how far the location under study is from the center of
the object that’s creating the gravitational field. That's the “r” in the equation. A typical mistake is to use
the distance to the surface of the object instead of the distance to its center. For instance, in this example
we were given the distance from the surface of the Earth, let’s call that the height of the object. We have to
add the radius of the Earth to that in order to obtain the distance of that location from the center of the
Earth,r=h + Rk

The radius the Earth is 6.4 x 106 m, so the surface of the Earth is just that far from the center of the Earth,
and the particular location under study is a height of 8.0 x 106 m above the surface. So this location is 14.4
x 106m from the center of the Earth, r = 14.4 x 10ém. With this information, there are two ways to calculate

g” at that location.
The first way uses the mass of the Earth and the distance directly:

g=GM/r2
g=(6.67 x 10 11N-m2/kg?)(6.0 x 1024 kg)/(14.4x106m)?
g = 1.9 m/s? towards the center of the Earth

The second way takes advantage of the fact that we know g for the surface of the Earth. So we just have to
compute how much further away this location is from the center of the Earth than is the surface of the
Earth and substitute that into the equation. In this case, r =14.4x106m and Rg = 6.4 x 10¢m, sor =
(14.4/6.4)Rg = 2.25 Rg. We can then substitute that into the equation and get:

g=GM/r2
Substituting in our expression for r

g =GMg/(2.25 Rg) 2
Squaring that expression
g =GMg/(5.06 Rg2)
Regrouping to obtain (GMg/Rk2)
g = (GMg/Re?) (1/5.06)
Substituting: gg = GMg/Re2 =9.8 m/s?
g=(9.8m/s?) /5.06
g = 1.9 m/s? towards the center of the Earth

Example 7
What is the gravitational field of the Earth at a height that is 5 times the radius of the Earth above its surface?

In this case, the location under study is 5Rg above the Earth’s surface. We have to add an additional
distance of Rg, in order to reach the Earth’s center, so

r = 6 Rg, or algebraically:

r=h+RE
I':SRE+RE
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r= 6RE
Having found “r”, the second method that we used above will prove simplest.

g=GM/r2

Substituting r = 6 Rg

Then squaring everything in the denominator
g= GME/[36 Rg 2)

Regrouping to get the term “(GMg/Rg2)” alone
g =(GMg/Re?) (1/36)

Then, using gz = 9.8 m/s2= GMg/Rg 2
g=(9.8m/s?) /36

g = 0.27 m/s? towards the center of the Earth

Orbital Motion

Newton based much of his theory on the work of Johannes Kepler, which was based on the astronomical
observations of Tycho Brahe. Newton concluded that in order for the planets to proceed in their orbits
around the sun there must be a force attracting them towards the sun. Kepler writings could be
summarized into three laws:

o Kepler’s first law states that the orbits of the planets are elliptical, with the sun at one focus.

o Kepler’s second law states that if you extend an imaginary line between the sun and a planet, that
that line would sweep out equal areas in equal times. In other words, the closer a planet is to the
sun, the faster it moves.

o Kepler’s third law states that there is a specific relationship between the orbital period and orbital
radius for each planet in the solar system. Specifically, for all planets orbiting the sun the ratio of
their orbital period squared divided by their orbital radius cubed, T2/r3, yields the same number.

Newton showed that these laws could only hold if there was a force attracting the planets towards the sun.
That force would have to be proportional to the mass of the orbiting planet and would have to diminish as
1/r2. By applying his third law, he also reasoned that if the force were proportional to the mass of the
planet, then it must also be proportional to the mass of the sun. The result was consistent with his Law of
Universal Gravitation:

Fc = GMm/r2

This equation can be shown to be consistent with Kepler’s third law. We’'ll use the approximation that the
orbits of the planets are nearly circular so that we can use our earlier analysis of circular motion: It turns
out that the same result is obtained for elliptical orbits.

We know from our earlier analysis that an object can only move in circular motion if there is a net force
directed towards the center of that circle. If no such force were present, it would move in a straight line,
notin a circle. We also know that the acceleration needed to keep an object moving is a circle is v2/r. If we
apply this to the planets orbiting the sun, we know that there must be a net force directed towards the sun
and that the size of that force must be equal to ma, or in the case of circular motion, m(v2/r). If the force
were supplied by gravity, then it must be given by F = GMm//r2.

YF=ma

Assuming gravitational force is responsible and that the motion is circular
yields
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Fec=m(v2/r)
Substituting in Newton'’s formula for gravitational force
GMm/r2 =mv?/r
Canceling the mass of the orbiting planet (showing that that mass of the
orbiting object doesn’t matter) and one of the r’s
GM/r =v2
Now substituting v = 2nr /T
GM/r = (2mr/T)?
Squaring everything on the right side of the equation
GM/r = 4m2r2 /T2
Now solve for T2/r3
T2/r3 = 4nz2/GM

Everything on the right hand side of this equation, 4n2/GM, is a constant. Also, at no point in this analysis
did we indicate which planet we were discussing...so this analysis is true for any planet orbiting the sun.
This is consistent with Kepler’s third law which states that the ratio of T2/r3 is the same for the orbits of all
the planets.

In fact, this analysis will hold for any orbital system, for all objects orbiting the Earth, all objects orbiting
Saturn, etc. All that changes is that the mass of the object being orbited becomes “M” in the above equation.
The mass of the orbiting object doesn’t matter.

All orbiting objects obey the relation that
T2/13 = 412 /GM
Where T is the period of the orbit, r is the radius of the orbit, G is the Universal Gravitation Constant and M
is the mass of the object being orbited.

The fact that T2/r3is constant for all the planets was know before Newton developed his law of universal
gravitation. It's what led him to the conclusion that the gravitational force must decrease as 1/r?;
otherwise the above analysis would predict the wrong result. It would take many years before the constant
“G” was measured by Henry Cavendish...but evidence for this law of Universal Gravitation came even before
that. It came from the parallel development of a law that would predict the falling of objects near the
surface of a planet.

Example 8

Now let’s determine the acceleration of the moon towards the Earth and see if it’s consistent with Newton'’s
Theory of Universal Gravitation. The key is that the radius of the moon’s orbit is 60 times the radius of the
Earth...so r = 60Rg. Given this, we can calculate the gravitational field at that distance from the Earth. That
will represent the acceleration of any object at that location, including the moon, towards the Earth. We can
then compare that to the centripetal acceleration of the moon based on the period and radius of its orbit.

First, let’s calculate the gravitational field due to the Earth at a distance equal to the moon’s distance from
the Earth, the radius of the moon’s orbit.

g=GM/r2

Substituting r = 60 Rg

Then squaring everything in the denominator
g =GMg/(3600 Re2)

Regrouping to get the term “(GMg/Rg2)” alone
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g =(GMg/Re?) (1/3600)
Then, using gz = 9.8 m/s2= GMg/Rg 2
g=(9.8m/s?) /3600
g=0.0027 m/s?
g =2.7 x10-3 m/s? towards the center of the Earth

Now, let’s calculate the acceleration of the moon towards the Earth using its period, 27.3 days, and the
radius of its orbit, 60 Rg.

a=vi/r
Substituting v = 2nir /T

a=(2nr/T)%/r

a=4mnzr/T?
T =(27.3 days)(24 hr/day)(3600s/hr)=2.36 x 10¢ s
r=60Rg=60(6.4x106m)=3.8x108m

a=4mn%(3.8x108m)/(2.36 x 10¢5)2
a=2.7x10-3 m/s? towards the center of the Earth

This is a striking confirmation of Newton’s Theory of Universal Gravitation. It shows clearly that the force
holding the moon in orbit is exactly the same as the force that makes an apple fall to the ground : the
gravitational field of the Earth.

Example 9: Geosynchronous Satellites

It’s often important to have a satellite maintain a constant position above the equator of the Earth. Otherwise,
satellite antennas on the ground, for instance for satellite television, could not always point to the same
location in space. For a satellite to remain above the same location on the Earth it must complete one orbit of
the Earth in 24 hours, so that it orbits at the same rate as the Earth rotates. What height above the ground
must geosynchronous satellites orbit?

The simplest way to solve this problem is to compare the orbit of a geosynchronous satellite to something
else orbiting the Earth, the moon. We know the period and the orbital radius of the moon and by Kepler’s
Third Law we know that T2/r3 will be the same for all objects orbiting the Earth.

Tm2/Tm3 = Tgs?/Tgs3 Where the subscript “m” is for the moon and “gs” is for a geosynchronous
satellite. Now we solve for rg. First, multiply both sides by rgs.

Tgs® (Tm?/Tm3) = Tes?
Then multiply both sides by (rm3/Tm?2)

Igs® = (tm®/Tw?) (Tgs?)
Substituting rm=60Rg, T =27.3 days and Tgs =1 day

g3 = ((60Rg)3/(27.3 days)?)(1 day) 2
Igs3 = 216000Rg3/745

Igs3 = 290Rg3

I'gs = 6.6Rg

This gives us the distance that the satellite must be from the center of the Earth. However, to calculate its
distance above the surface of the Earth we need to subtract the radius of the Earth, Rk.
h =T- RE
h=6.6Rg- Rg
h=5.6Rg
To get an answer in meter, we just substitute the value of Rg
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h=5.6 (6.4x106m)
h=36x106m
h = 36,000 km above the surface of the Earth

Example 10: Weighing the Earth

In 1798, the value of “G” was measured for the first time. This was accomplished by Henry Cavendish,
more than a century after Newton'’s theories were published. This was a difficult feat because the value of
“G” is so small. But he was able to use a delicate instrument to determine the gravitational force between
two accurately measured spherical masses. His measurement is often referred to as “weighing the Earth”
as it allowed for the mass of celestial objects, including the Earth, to be accurately determined. Cavendish
determined that:

G =6.67 x 10-11 N-m2/kg?
With that information let’s determine the mass of the Earth.

G = GM¢/Re?
Solving for M.
M. = gRe2/G
Now let’s put in actual numbers

M = (9.8 m/s?) (6.4 x 106m)?2/(6.67 x 10-11 N-m2/kg?)
Me = (9.8 m/s?) (41 x 1012m2) /(6.67 x 10-11 N-m2/kg?)
Me = (401 x 1012m?2) / (6.67 x 10-11 N-m2/kg?)

M =6.0x 1024kg

Launching a Satellite and Weightlessness
There are two steps required to launch a satellite. First, you must get it to its specified height, and then you

must give it the correct velocity; both with respect to its size as well as its direction. The direction of the
velocity must be tangent to its orbit, and perpendicular to the line between the satellite and the center of
the sphere being orbited. The magnitude depends on the gravitational field at that height, g, in that g at
that height must be equal to the centripetal acceleration of the satellite.

g=ac
Substituting expression for g and ac
GM/r2=v2/r
Canceling one r and taking the square root of both sides
v =(GM/r)1/2
Thus the velocity that a satellite requires in order to maintain its orbit is a function only of the mass of the
object being orbited and the distance from its center.

The velocity of an object in circular orbit is given by:
v = (GM/r)1/2 tangent to its orbit
where M is the mass of the object being orbited and r is the distance from its center.

It's important to recognize that the direction of the velocity is critical. If the satellite is launched to its
orbital height by being shot vertically upwards, then the velocity that it must be given to go into orbit will
be perpendicular to its launch velocity. So, at the moment it reaches its highest point, and momentarily
stops, its rockets must fire in a direction perpendicular to the path that it was traveling to reach that point.
That gives the satellite the velocity in the correct direction in order to maintain its orbit.
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If the satellite is given too much or too little velocity for its given height, based on the above formula, then
the orbit will be elliptical rather than circular. If its velocity is too large at the location where the rockets
are fired then the orbit will be at its lowest altitude at that location, the perigee of the satellites orbit. If too
little, that will be the highest point of its orbit, its apogee.

We can also see from this analysis why object appear weightless in space. It’s not that gravity is not
present; we know from our earlier discussion that the gravitational field of an object extends through all of
space, falling off as 1/r2, but never becoming zero. However, all of the objects in a spacecraft have the same
velocity and are at the same distance from the center of the Earth. As a result, they are all in orbit together.
If you took away the spacecraft, the occupants and all the objects in the spacecraft would continue to orbit
the Earth in exactly the same way. So if you tried to stand on a scale, the scale, the “floor” of the spacecraft
and you would all just float together in orbit..you’d exert no “weight” on the scale...hence you appear
“weightless”. The actual force of gravity acting on you is not much different than when you are standing on
the surface of the earth.

Example 11
Determine the force of gravity acting on a 100 kg person standing on the surface of the Earth and in orbit
aboard the International Space Station. Calculate the percentage difference.

L b B N »
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The International Space Stati

on oi‘bitiﬁg the Earth at a height of 218 miles

On the surface of the Earth
Fc=mg

On the surface of the Earth, g = 9.8 m/s?
Fec = (100kg)(9.8 m/s?)
Fc=980N

In the orbiting International Space Station

First, we must calculate its distance from the center of the Earth. Its orbital height is 218 miles, or 0.35 x
106 m, above the surface of the earth. To this, must be added the distance from the surface to the center of
the earth, Rg, which is 6.4 x 106 m. So its distance from the center of the Earth is given by:

r=h+ RE

r=0.35x10m + 6.4 x106m

r=6.75x106m
which is not very different than Rg, 6.4 x 106 m.
Now we can calculate g at that location.
g=GM/r2
g=(6.67 x 10 -11N-m2/kg?)(6.0 x 1024 kg) /(6.75x106m)?
g=8.8m/s?

Now we can use that value of g to calculate Fg
F¢ = (100kg)(8.8 m/s?)
Fc = 880N
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So a 100 kg astronaut would feel a gravitational force of 980N standing on the Earth and a force of 880N in
orbit on the International Space Station. That difference of 100N represents a percentage decrease of
100N/980N = 10%. The fact that he or she would feel a reduction of 10% in gravitational force would
hardly explain why the astronaut would float in the cabin, as shown below. That is explained by the fact
that both the space station and the astronaut are falling around the planet in orbit together.
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