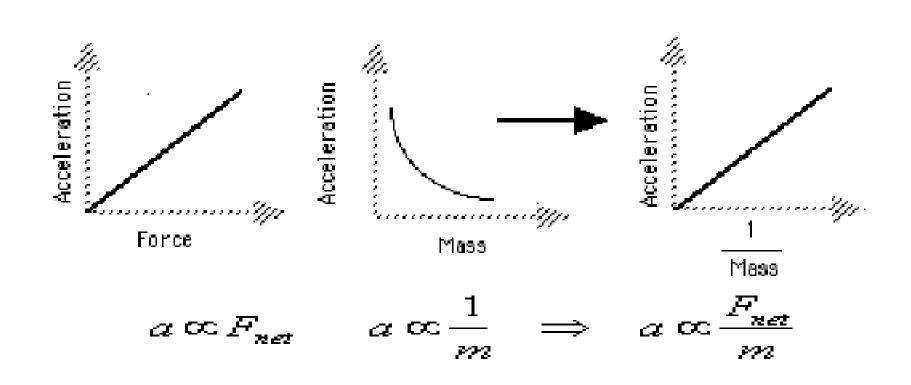
Relationship between


Acceleration, mass, and force

- Unit Learning Expectation
  - We are learning to describe the relationship between an object's mass and the resulting uniform acceleration due to a constant net force acting on the object.

- Introductory Lab Exploration
  - Newton 500
    - Constant force, varied mass
    - Constant mass, varied net force
    - Calculate acceleration

Newton 500 Lab Document

Newton 500 Graphs
See whiteboard exemplars



Unit 5 Timeline: Anticipated Schedule

(Week 1-3 to 1-7) Day 1: Review comments from Unit 4 and 6 test. Have students self assess work.

Pre-Lab Modified Atwood experiment / Rubber Band Dynamics Cart

HW: Honors Zit. 6.1 CP Hsu: 2.2 p.32-37

(Week 1-3 to 1-7) Day 2: Lab: Modified Atwood

WB: Results and graphs

Form Fnet  $\neq$  0N model (Fnet=ma)

HW: Full page showing model and representations of model.

(Week 1-3 to 1-7) Day 3: FA: Quiz 1 (Description: Forces LE 1.1, 1.2, 1.3)

Demo: Elevator Measurements/video

**Practice Problem** 

HW: Wkst 1

Unit 5 Timeline: Anticipated Schedule

(Week 1-10 to 1-14) Day 4: WB: Wkst 1

HW: Wkst 2

(Week 1-10 to 1-14) Day 5: WB: Wkst 2

FA: Quiz 2 (Description: Forces LE 1.4)

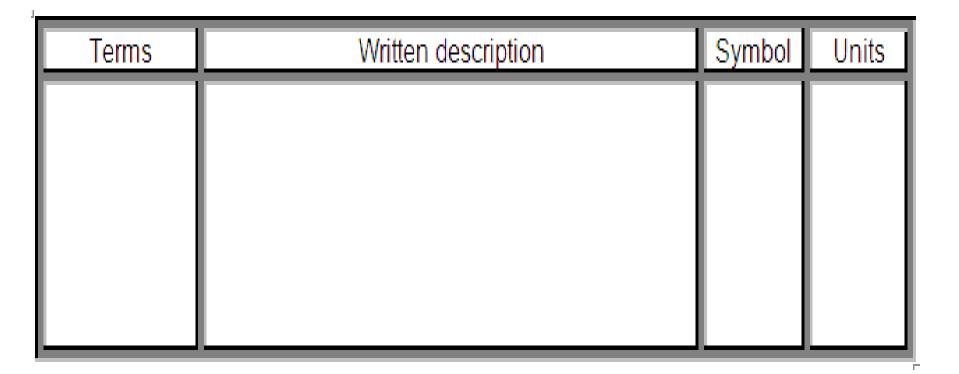
HW: Honors Wkst 3 CP Wkst 2a

(Week 1-10 to 1-14) Day 6: WB: Honors Wkst 3 CP Wkst 2a

Demo: Static friction

HW: Wkst 4

Unit 5 Timeline: Anticipated Schedule


(Week 1-18 to 1-24) Day 7: WB: Wkst 4

Application of Net Force: Circular Motion

HW: Review

(Week 1-18 to 1-24) Day 8: Review

(Week 1-18 to 1-24) Day 9: Assessment



| What we did | Results (include graph) |
|-------------|-------------------------|
|             |                         |
|             |                         |
|             |                         |
|             |                         |
|             |                         |
|             |                         |
|             |                         |
|             |                         |
|             |                         |
|             |                         |
|             |                         |
|             | What we did             |

New mathematical representations

#### **Unit V:**

#### **Constant Force Particle Model**

By the time you finish all labs, worksheets and related activities, you should be able to:

- 1. Use Newton's 2nd Law to qualitatively describe the relationship between **m** and **a**, **F** and **a**, **m** and **F**. (e.g., if you double the mass, the acceleration will...)
- 2. Given a **v** vs **t** graph, draw the corresponding **a** vs **t** and **F** vs **t** graphs.
- 3. Determine the net force acting on an object by:
- a. drawing a force diagram for an object given a written description of the forces acting on it.
- b. resolving forces into  $\mathbf{x}$  and  $\mathbf{y}$  components, then finding the vector sum of the forces.
- c. analysis of the kinematic behavior of the object.
- 4. Solve quantitative problems involving forces, mass and acceleration using Newton's 2nd Law.
- a. Having determined the net force (as in #3), and given the mass, find the acceleration.
- b. Continue to use the kinematical models from unit III to determine the velocity or displacement of the object, once the acceleration is known.