Unit 4 Review

1) Find the angle of elevation if you are standing 400 ft. from the base of a building that is 850 ft. tall.

$$\tan x^{\circ} = \frac{850}{400}$$

$$x = \tan^{-1}(\frac{850}{400})$$

$$x = 64.8^{\circ}$$

2) You are a block away from a skyscraper that is 780 feet tall. Your friend is between the skyscraper and yourself. The angle of elevation from your position to the top of the skyscraper is 42°. The angle of elevation from your friend's position to the top of the skyscraper is 71°. To the nearest foot, how far are you from your friend?

$$tan (42^{\circ}) = \frac{780}{7}$$

$$x = 866 - 269$$

$$x = 597 ft$$

3) An airplane takes off 200 yards in front of a 60 foot building. At what angle of elevation must the plane take off in order to avoid crashing into the building? Assume that the airplane flies in a straight line and the angle of elevation remains constant until the airplane flies over the building.

$$\tan x^{\circ} = \frac{60}{\cos x}$$

$$x = \tan^{-1}(\frac{60}{\cos x})$$

$$x = 5.7^{\circ}$$

4) From an airplane at an altitude of 1200 m, the angle of depression to a rock on the ground measures 28°. Find the distance from the plane to the rock.

$$4n28^{\circ} = \frac{1700}{x}$$

$$x = 2256.9 \text{ m}$$

$$y = 2556.1 \text{ m}$$

5) The accompanying diagram shows a flagpole that stands on level ground. Two cables, *r* and *s*, are attached to the pole at a point 16 feet above the ground. The combined length of the two cables is 50 feet. If cable *r* is attached to the ground 12 feet from the base of the pole, what is the measure of the angle, *x*, to the *nearest degree*, that cable *s* makes with the ground?

6) A surveyor needs to find the distance BC across a lake as part of a project to build a bridge. The distance from point A to point B is 325 feet. The measurement of angle A is 42° and the measurement of angel B is 110°. What is the distance BC across the lake to the nearest foot?

$$\frac{\sin(28)}{325} = \frac{\sin 42}{a}$$
 $a = \frac{325 \sin 42}{\sin 28}$
 $a = 463 + 4$

7) A tree leans 7° to the vertical. At a point 40 feet from the tree (on the side closet to the lean), the angle of elevation to the top of the tree is 24°. Find the height of the tree.

$$\frac{\sin(24)}{x} = \frac{\sin(73)}{40}$$

$$x = \frac{40 \sin(24)}{\sin(73)} = 17 \text{ (17)}$$

8) Two markers A and B are on the same side of a river and are 58 feet apart. A third marker is located across the river at point C. A surveyor determines that $\angle CAB = 68^{\circ}$ and $\angle ABC = 52^{\circ}$. What is the distance between points A and C and what is the distance across the river?

9) For $\triangle ABC$ find the measure of side a to the nearest tenth.

10) For $\triangle ABC$ find the measure of side c to the nearest tenth.

$$C^2 = 8^2 + 15^2 - 2(8)(15) \cos(135)$$
 $C^2 = 458.7$
 $C = 21.4$

N2 = 602+902-2(60)(90) cos (451)

11) On a regulation baseball field, the four bases form a square whose sides are all 90 feet apart. The center of the pitching mound is 60 feet from home plate. How far is the mound from first base?

$$x^2 = 4063.25$$
 $x = 63.7 ft$

12) A person stands at the window of a building so that his eyes are 12.6 m above the level ground. An object is on the ground 58.5 m away from the building on a line directly beneath the person. Compute the angle of depression of the person's line of sight to the object on the ground.

tan
$$x^{\circ} = \frac{12.6}{58.5}$$

 $x = \frac{12.6}{58.5}$
13) Find the area

$$A = \frac{1}{2} (45)(28) \sin(58.10)$$

$$A = 534.9 \text{ on}^2$$