Unit 5 Lesson 6: Quadratic Formula

WARM UP

1. What is the Standard Form of a Quadratic? ______

List ABC for each Quadratic Equation:

2.
$$5x^2 - 7x + 3$$

3.
$$-3x^2 + 4x - 9$$

4. Factor: $2x^2 - 7x + 10$

NOTES

QUADRATIC FORMULA

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

***WHEN DO YOU USE THE QUADRATIC FORMULA?

EXAMPLES

a)
$$2x^2 - 10x + 7$$

b)
$$3x^2 - 8x - 6$$

Quadratic Formula Practice

Use the quadratic formula to solve each equation. Leave your answer in radical form.

1)
$$2x^2 + 6x + 3 = 0$$

1)
$$2x^2 + 6x + 3 = 0$$
 2) $x^2 + 9x - 13 = 0$

3)
$$x^2 = 3x + 2$$

4)
$$3x^2 + 4x - 5 = 0$$

4)
$$3x^2 + 4x - 5 = 0$$
 5) $3x^2 - 5x - 12 = 0$

6)
$$2x^2 = 3x + 7$$

7)
$$5x^2 + x - 3 = 0$$

8)
$$5x^2 - 2x - 7 = 0$$

9)
$$x^2 = 8$$

DISCRIMINANT

Quadratic equations can have real or complex solutions. You can determine the **type** and **number** of solutions by finding the discriminant.

The *discriminant* of a quadratic equation in the form $ax^2 + bx + c = 0$ is the value of the expression $b^2 - 4ac$.

Value of the Discriminant	Type and Number of Solutions for	Examples of Graphs of $y = ax^2 + bx + c$
Diooriiiiian	$ax^2 + bx + c = 0$	y = ux + ox + c
$b^2 - 4ac > 0$		
$b^2 - 4ac = 0$		
$b^2 - 4ac < 0$		

Example: Using the Discriminant

Determine the type and number of solutions of each equation.

(a)
$$x^2 + 4x + 5 = 0$$

(b)
$$4x^2 + 20x = -25$$

(c)
$$2x^2 + 7x - 15 = 0$$

Discriminant Practice

Find the value of the discriminant of each quadratic equation.

1)
$$6p^2 - 2p - 3 = 0$$

$$2) -2x^2 - x - 1 = 0$$

Find the discriminant of each quadratic equation then state the number of real and imaginary solutions.

7)
$$9n^2 - 3n - 8 = -10$$

8)
$$-2x^2 - 8x - 14 = -6$$

9)
$$9m^2 + 6m + 6 = 5$$

10)
$$4a^2 = 8a + 4$$

Graded Practice Unit 5 Lesson 6

Solve each equation with the quadratic formula.

1)
$$2n^2 - n - 4 = 2$$

2)
$$b^2 - 4b - 14 = -2$$

3)
$$8n^2 - 4n = 18$$

4)
$$8a^2 + 6a = 5$$

5)
$$10x^2 - 8 = x$$

6)
$$n^2 = 9n - 20$$

Find the discriminant of each quadratic equation then state the number of real and imaginary solutions.

7)
$$-9b^2 = -8b + 8$$

8)
$$-x^2 - 9 = 6x$$

9)
$$-4r^2 - 4r = 6$$

10)
$$7b^2 - 6b + 3 = 5b^2$$