Lesson 12-1 Find the *n*th term and arithmetic means of an arithmetic sequence.

Find the 35th term in the arithmetic sequence $-5, -1, 3, \dots$ Begin by finding the common difference d. d = -1 - (-5) or 4 Use the formula for the nth term. $a_n = a_1 + (n-1)d$ $a_{35} = -5 + (35 - 1)(4)$ or 131

11. Find the next four terms of the arithmetic 3. 4.3, 5.6, 6.9, 8.2.0 g Find the next 18.5 6, ... 6.9, 8.2, 9.5, 102

12. Find the 20th term of the arithmetic sequence which $a_1 = 5$ and d = -3.

13. Form an arithematic sequence that has three arithme to means between 6 and -4. 6, 3.5, -1.5, -4

Lesson 12-1 Find the sum of n terms of an arithmetic series.

The sum S_n of the first n terms of an arithmetic series is given by $S_n = \frac{n}{2}(a_1 + a_n).$

14. What is the sum of the first 14 terms in the arithmetic series -30-23-16-...?

15. Find n for the arithmetic series for which $a_1 = 2$, d = 1.4, and $S_n = 250.2$. 18

Lesson 12-2 Find the *n*th term and geometric means of a geometric sequence.

Find an approximation for the 12th term of the sequence -8, 4, -2, 1, ...First, find the common ratio. $a_2 \div a_1 = 4 \div (-8) \text{ or } -0.5$ Use the formula for the nth term. $a_{12} = -8(-0.5)^{12-1}$ $a_n = a_1 r^{n-1}$ = $-8(-0.5)^{11}$ or about 0.004

16. Find the next three terms of the geometric sequence 49, 7, 1,
$$\frac{1}{7}$$
, $\frac{1}{49}$, $\frac{1}{343}$

17. Find the 15th term of the geometric sequence for which $a_1 = 2.2$ and r = 2.

18. If r = 0.2 and $a_7 = 8$, what is the first term of the geometric sequence? 125,000

19. Write a geometric sequence that has three geometric means between 0.2 and 125. $0.2. \pm 1.5. \pm 25.125$

Lesson 12-2 Find the sum of n terms of a geometric series.

Find the sum of the first 12 terms of the geometric series $4 + 10 + 25 + 62.5 + \cdots$ First find the common ratio. $a_2 \div a_1 = 10 \div 4 \text{ or } 2.5$ Now use the formula for the sum of a finite geometric series.

$$S_n = \frac{a_1 - a_1 r^n}{1 - r}$$

$$S_{12} = \frac{4 - 4(2.5)^{12}}{1 - 2.5} \quad n = 12, a_1 = 4, r = 2.5$$

$$S_{12} \approx 158,943.05 \quad Use a calculator.$$

20. What is the sum of the first nine terms of the geometric series $1.2 - 2.4 + 4.8 - \cdots$? 205.2

21. Find the sum of the first eight terms of the geometric series $4 + 4\sqrt{2} + 8 + \cdots$. $60(1 + \sqrt{2})$

STUDY GUIDE AND ASSESSMENT

OBJECTIVES AND EXAMPLE

12-3 Find the limit of the terms and the of an infinite geometric series.

Find
$$\lim_{n\to\infty} \frac{2n^2+5}{3n^2}$$
.

$$\lim_{n \to \infty} \frac{2n^2 + 5}{3n^2} = \lim_{n \to \infty} \left(\frac{2}{3} + \frac{5}{3n^2} \right)$$

$$= \lim_{n \to \infty} \frac{2}{3} + \lim_{n \to \infty} \frac{5}{3} \cdot \lim_{n \to \infty} \frac{1}{n^2}$$

$$= \frac{2}{3} + \frac{5}{3} \cdot 0$$

Thus, the limit is $\frac{2}{3}$.

REVIEW EXERGISES

Find each limit, or state that the limit does not exist and explain your reasoning. 22. $\lim_{n\to\infty} \frac{3n}{4n+1} \frac{3}{4}$ 23. $\lim_{n\to\infty} \frac{6n-3}{n} = 6$ 24. $\lim_{n\to\infty} \frac{2^n n^3}{3n^3}$ See 25. $\lim_{n\to\infty} \frac{4n^3-3n}{n^4-4n^3} = 6$

22.
$$\lim_{n\to\infty} \frac{3n}{4n+1} \frac{3}{4}$$

Additional Answ 24. Does not exist;

 $\lim \frac{2^n n^3}{3n^4} = \lim \frac{2^n}{3}$

im 2 becomes i

large as n approa the sequence has

 $(3 \cdot 7 - 3) + (3 \cdot 1)$

31. (3 · 5 - 3) + (3 · 6

 $(3 \cdot 9 - 3)$ 32. $(0.4)^1 + (0.4)^2 + (0.4)^2$

24.
$$\lim_{n\to\infty} \frac{2^n n^3}{3n^3}$$
 See

25.
$$\lim_{n\to\infty} \frac{4n^3-3n}{n^4-4n^3}$$

26. Write $5.\overline{123}$ as a fraction. $5\frac{41}{313}$

27. Find the sum of the infinite series $1260 + 504 + 201.6 + 80.64 + \cdots$, or state that the sum does not exist and explain your

Determine whether a series is mvergent or divergent.

Use the ratio test to determine whether the series $3 + \frac{3^2}{2!} + \frac{3^3}{3!} + \frac{3^4}{4!}$ is convergent or

The nth term a_n of this series has a general form of $\frac{3^n}{n!}$ and $a_{n+1} = \frac{3^{n+1}}{(n+1)!}$. Find

$$r = \lim_{n \to \infty} \frac{3^{n+1}}{a_n}$$

$$r = \lim_{n \to \infty} \frac{3^n}{\frac{(n+1)!}{n!}}$$

$$r = \lim_{n \to \infty} \frac{3}{n+1} \text{ or } 0$$

$$r = \lim_{n \to \infty} \left[\frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} \right] \quad \text{Sin}$$

 $r = \lim_{n \to \infty} \left[\frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} \right]$ Since r < 0, the series is convergent.

- 28. Use the ratio test to determine whether the series $\frac{1}{5} + \frac{2^2}{5^2} + \frac{3^2}{5^3} + \frac{4^2}{5^4} + \cdots$ is convergent or divergent. convergent
- 29. Use the comparison test determine whether the series $\frac{6}{1} + \frac{7}{2} + \frac{8}{3} + \frac{9}{4} + \cdots$ is convergent or divergent. divergent
- 30. Determine whether the series $2+1+\frac{2}{3}+\frac{1}{2}+\frac{2}{5}+\frac{1}{3}+\frac{2}{7}+\cdots$ is convergent or divergent. divergent

use sigma notation.

Write $\sum_{n=1}^{3} (n^2 - 1)$ in expanded form and then find the sum.

$$\sum_{k=1}^{3} (n^2 - 1) = (1^2 - 1) + (2^2 - 1) + (3^2 - 1)$$
$$= 0 + 3 + 8 \text{ or } 11$$

Write each expression in expanded form and then find the sum.

31.
$$\sum_{a=5}^{9} (3a-3)$$
 90 32. $\sum_{k=1}^{8} (0.4)^k \frac{2}{3}$ 31-32. See margin for expanded form.

Express each series using sigma notation

Express each series damp
$$\frac{2}{33}$$
. $-1 + 1 + 3 + 5 + \cdots = \sum_{n=1}^{3} \frac{(2n-1)}{(n^2+1)}$
34. $2 + 5 + 10 + 17 + \cdots + 82 = \sum_{n=1}^{3} \frac{(n^2+1)}{(n^2+1)}$

Find the fourth term of $(2x - y)^6$.

$$(2x - y)^6 = \sum_{r=0}^6 \frac{6!}{r!(6-r)!} (2x)^6 - r(-y)^r$$

To find the fourth term, evaluate the general term for r=3.

general term for
$$r = 3$$
.

$$\frac{6!}{3!(6-3)!} (2x)^{6-3} (-y)^3$$

$$= \frac{6 \cdot 5 \cdot 4 \cdot 3!}{3! \cdot 3!} (2x)^3 (-y^3) \text{ or } -160x^3y^3$$

35. $(a-4)^6$ 36. (2r + 3

Find the designated term of each b

37. 5th term of
$$(x-2)^{10}$$
 3360 x^6 38. 3rd term of $(4m+1)^8$ 114,688 262,440 40. 6th term of $(2c-1)^{12}$ 7101,3

Write $\sqrt{3} - i$ in exponential form.

Write the polar form of $\sqrt{3} - i$.

$$r = \sqrt{(\sqrt{3})^2 + (-1)^2} \text{ or } 2, \text{ and } \theta = \text{Arctan } \frac{-1}{\sqrt{3}} \text{ or } \frac{5\pi}{6}$$

$$\sqrt{3} - i = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) = 2e^{i\frac{5\pi}{6}}$$

Write each expression or complex

41.
$$2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
 2eⁱ 42. 4i 4eⁱ 43. 2 - 2i 2 $\sqrt{2}$ eⁱ

44.3 $\sqrt{3}$ + 3i 6e'

Lesson 12-8 Iterate functions using real and complex numbers.

Find the first three iterates of the function f(z) = 2z if the initial value is 3 - i.

$$z_0 = 3 - i$$

 $z_1 = 2(3 - i) \text{ or } 6 - 2i$
 $z_2 = 2(6 - 2i) \text{ or } 12 - 4i$
 $z_3 = 2(12 - 4i) \text{ or } 24 - 8i$

Find the first four iterates of each for using the given initial value. If neces your answers to the nearest hundre **45**. f(x) = 6 - 3x, $x_0 = 2$ **0**, **6**, -12,

46.
$$f(x) = x^2 + 4$$
, $x_0 = 2$ 0, 6, -12, 895, 984, 493
Find the first three iterates of the full $f(z) = 0.5z + (4 - 2i)$ for

f(z) = 0.5z + (4 - 2i) for each initia 47. $z_0 = 4i$ **48.** $z_0 = -8$

49.
$$z_0 = -4 + 6i$$

47-50. See margin. 48. $z_0 = -8$
50. $z_0 = 12$

Lesson 12-9 Use mathematical induction to prove the validity of mathematical statements.

Proof by mathematical induction: 1. First, verify that the conjecture S_n is valid for the first possible case, usually

2. Then, assume that S_n is valid for n = kand use this assumption to prove that it Use mathematical induction to prove proposition is valid for all positive inte values of n. 51-53. See Answer Appe **51.** $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$

52.
$$3 + 8 + 15 + \dots + n = \frac{n(n+1)}{2}$$

53. $9^n - 4n$

53.
$$9^n - 4^n$$
 is divisible by 5.