Unit 4 Lesson 6

Area of Oblique Triangles

INVESTIGATION SCENARIO: Jackson the gardener is making a triangular garden. He knows that one side of fencing measures 10 feet and another side measures 24 feet. These two sides of fencing are joined at a 62° angle. He needs to know the area of the triangular plot of garden to know how much fertilizer to buy. Questions to ask yourself while solving Jackson's problem are:

How can we relate our knowledge of the area of a triangle without having the proper information? What information do you need to solve for the area of a triangle?

Question 1
a) What is the formula to find the area of a triangle? What does each component mean?
b) What component(s) are missing in the garden problem?
c) Is there a way to find that missing information with what is given?
d) What is the area of Jackson's garden?

Questions 2

Explain at each step: what is going on and if it is mathematically correct

(1)
$$Sin A = \frac{h}{c}$$

(2)
$$h = c \sin A$$

(3)
$$Area = \frac{1}{2}(base)(height)$$

(4)
$$Area = \frac{1}{2} b c Sin A$$

SO WHAT IS THE AREA FORMULA FOR OBLIQUE TRIANGLES?

QUESTION 2

Explain at each step: what is going on and if it is mathematically correct.

(1)
$$Sin B = \frac{h}{a}$$

(2)
$$h = a \sin B$$

(3)
$$Area = \frac{1}{2}(base)(height)$$

(4)
$$Area = \frac{1}{2} c a Sin B$$

SO WHAT IS THE AREA FORMULA FOR OBLIQUE TRIANGLES?

QUESTION 2

Explain at each step: what is going on and if it is mathematically correct.

- (1) $Sin C = \frac{h}{b}$
- (2) $h = b \sin C$
- (3) $Area = \frac{1}{2}(base)(height)$
- (4) $Area = \frac{1}{2} a b Sin C$

SO WHAT IS THE AREA FORMULA FOR OBLIQUE TRIANGLES?

Practice Problems:

Find the area of each figure. Round your answer to the nearest tenth.

- A triangle with two sides that measure 6 yd and 2 yd with an included angle of 10°.
- A triangle with two sides that measure 6 m and 8 m with an included angle of 137°.

Name: _____ Date

_ Date:_____

UNIT 4 LESSON 6 Graded Practice

Find the area of the triangle having the given measurements

1)
$$A = 48^{\circ}, b = 20 ft, c = 40 ft$$

2)
$$A = 22^{\circ}$$
, $b = 20 ft$, $c = 50 ft$

3)
$$B = 36^{\circ}$$
, $a = 3yd$, $c = 6yd$

7) A triangular field is surveyed. The length of one side of the field measured 365 meters and another was 267 meters. The angle between these two sides was 100°. What is the area of the farmer's field?	
8) Find the area of a triangle with two sides that measure 5 cm and 8cm with an included angle of 39°.	
9) Find the area of a triangle with two sides that measure 8ft and 7ft with an included angle of 30° .	