Unit 3 Project Mathematical Thinking

You need to show all known and unknown variables with units, equation you used, plugging in

Height Information

- Track to the wall: 0.5 meters
- Length of the track: 1 m
- Heights of the ramp...
 - o 0.2 m
 - o 0.35 m
 - o 0.5 m

Mass

- Measure the mass of your device with the cart
- Convert to kg- move the decimal three to the left
 - 301 grams = 0.301 kg

Motion

- Initial velocity of cart (v0)
 - Think about what it is before the car is released
- Total distance traveled by the car in meters
 - Information posted in the lab
- Time it took for the car to travel down the ramp
 - \circ You will need to time this
- The acceleration of the cart
 - Use a kinematic equation
- The final velocity of the cart (vf)
 - Use a kinematic equation (it's not zero)

 $v=v_0+at$ $\Delta x=v_0t+rac{1}{2}at^2$ $v^2=v_0^2+2a\Delta x$

Forces

- The force of the crash (F=ma)
 - Mass of your cart and helmet in kg * acceleration of the crash in m/s²
- A free body diagram of the cart going down the ramp and when it hits the wall

Energy

- Type of energy at the top before the cart goes at the top, middle and end and why
- Height of ramp in meters
 - Check the board
- Determine the initial potential energy
 - PE = m*g*h (mass of cart and helmet in kg, gravity = 9.81 m/s/s and height in meters)
- Kinetic and potential energy halfway down the rmap
- Total energy at the end of the ramp
- Velocity at the end of the ramp- use the kinetic energy equation (K= $^{1\!\!/_2}$ m v^2)

Conservation of Momentum

- Type of collision and why
- The amount of force that your cart experienced
 - See forces section
- Momentum at the end
 - \circ p = m*v
- Impulse (using the impulse equation) to find t

 \circ p = I = F*t