Physics- Monday, October 28th

Schedule

- 1. Turn in Unit 1 Final Model
- 2. Review Modeling
- 3. Get White Boards
- 4. Light Phenomenon
- 5. Present Models to classmates

Warm Up

- Take out your notebook.
- List at least 5
 qualities of a
 great model

Standards

- 2.1 Wave Behavior: I can explain
 and model the behavior of waves
 including interactions between
 two waves and predict behavior.
- 2.2 Sound: I can determine how sound will travel and predict
- ! behavior between one or more! sources of sound
 - 2.3 Light Behavior: I can determine the interaction of light
- waves and predict behavior through different mediums.

Phenomenon Waves Light Sound

- Shine Laser Across Room- Model
- 2. Sprinkle Powdered Sugar on Laser Light
- 3. Sprinkle Water on Laser Light
- 4. Sprinkle Oil on Laser Light

Phenomenon Question:

Which substance showed the laser light the best?

Physics- Tuesday, October 29th

Schedule

- 1. Pass Back Papers
- 2. Class Model
- 3. Class Questions
- Hand out Calendar and SS
- 5. Pre-Assess
- 6. What can we measure from a

wave?

Standards

7. Wave Investigation

Warm Up

Sit with your partner from yesterday and get model from teacher or take it out.

Standards

2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
2.2 Sound: I can determine how

! sound will travel and predict! behavior between one or more! sources of sound

2.3 Light Behavior: I can determine the interaction of light

waves and predict behavior through different mediums.

Current Sem1 - Pr	ogress Rpt	2 Grade: B+ 🛛 😓				Teacher: <u>Wentzloff, Vanessa</u>
Detail Date Due	Assigned	Assignment	Pts Possible	Score	Scored As	Extra Not Credit Graded Comments
09/23/2019	09/23/2019	1.1 Electrostatics	4	2.8	2- Functional understanding towards proficiency	Balloon Labs CERs due 10/2
09/23/2019	09/23/2019	1.2 Circuit Configuration	4	3.8	3.5 - Proficiency working towards mastery	Circuit Assessment
09/23/2019	09/23/2019	1.3 Ohm's Law	4	3.2	2.5 - Functional understanding almost proficiency	Circuit Assessment
09/23/2019	09/23/2019	1.4 Electricity and Magnetism	4	4	4- In depth mastery	Final Phenomenon Model
09/23/2019	09/23/2019	M.1 Modeling Details	4	3.2	2.5 - Functional understanding almost proficiency	missing key details- Final Phenomenon Model
09/23/2019	09/23/2019	A.1 Claim (CER)	4	3.6	3- Proficiency	Balloon Labs CERs due 10/2
09/23/2019	09/23/2019	A.2 Evidence (CER)	4	4	4- In depth mastery	Balloon Labs CERs due 10/2
09/23/2019	09/23/2019	A.3 Reasoning (CER)	4	3.6	3- Proficiency	Balloon Labs CERs due 10/2
09/16/2019	09/16/2019	0.1 Measurements in the Metric System	4	4	4- In depth mastery	Hallway Scale Drawing Due 9/23
09/16/2019	09/16/2019	0.2 Scale Drawings	4	3.2	2.5 - Functional understanding almost proficiency	missing measurements- Hallway Scale Drawing Due 9/23

19/20 AHS

Per: 1 Physics S1 (HSSC330-1)

What can we measure about this wave?

At WHS (Wavetown High School) there was a break in...

Who was it?

A wave destroyed classrooms.

Physics- Wednesday, October 30th

Schedule

- Pass back papers + calendar/SS
- 2. Wave Investigation
- 3. Parts of a Wave
- 4. What makes a wave a wave?
- 5. Slinky Fun

Warm Up

 Take out your wave investigation from yesterday.

Standards

- 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
- 2.2 Sound: I can determine how sound will travel and predict
- ! behavior between one or more sources of sound
 - 2.3 Light Behavior: I can determine the interaction of light
- waves and predict behavior through different mediums.

What is a wave?

Frequency: Period: Wave Speed:

$$V = f X \lambda$$

Frequency, amplitude, wavelength, wave speed

Frequency, amplitude, wavelength, wave speed

Rank smallest to biggest wavelength, frequency and amplitude

Physics- Thursday, October 31st

Schedule

- 1. Parts of a Wave i!
 Review and i!
 Practice
- 2. Partners for Slinkies
- 3. Review of Parts of a Lab
- 4. Slinky Design Lab

Warm Up

 Take out your wave investigation from yesterday.

Standards

- 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
- 2.2 Sound: I can determine how sound will travel and predict
- behavior between one or moresources of sound
- 2.3 Light Behavior: I can determine the interaction of light waves and predict behavior
- ! through different mediums.

Frequency, amplitude, wavelength, wave speed

Frequency, amplitude, wavelength, wave speed

Rank smallest to biggest wavelength, frequency and amplitude

Slinky Waves

Figure 4. Propagation in longitudinal and transverse waves generated using a Slinky*

(a) longitudinal, (b) transverse (Cutnell & Johnston, 2012)

What are parts of a lab?

Writing a great procedure

- 1) Units
- 2) Exactly what you are doing with measurements
- 3) Reference a diagram
- 4) Never assume

Variables

Independent

Dependent

Controls

Create Your Lab

When you done, show your teacher.

Then we will swap labs and try it out to get feedback

Maximum Stretch of 2m

Physics- Friday, November 1st

Schedule

- 1. Slinky Design Lab Create, Feedback and Improve
- Interference, Destruction of
- Waves with Slinkies

 3. What do waves

 need to travel
- through?
- 4. Star Wars Video
- 5. Examples of Waves in Everyday Life
- 6. Sound Waves Intro

Warm Up

Sit with you
 Slinky Partner
 from yesterday!

Standards

- 2.1 Wave Behavior: I can explain
 and model the behavior of waves
 including interactions between
 two waves and predict behavior.
 2.2 Sound: I can determine how
- ! sound will travel and predict behavior between one or more
- sources of sound
- 2.3 Light Behavior: I can determine the interaction of light waves and predict behavior
- ! through different mediums.

Create Your Lab

When you done, show your teacher.

Then we will swap labs and try it out to get feedback

Maximum Stretch of 2m

Try out the other group's lab.

Give feedback. What worked? What didn't?

Physics- Monday, November 4th

Schedule

- 1. Practice Procedures
- Interference, Destruction of Waves with Slinkies
- 3. Examples of Waves in Everyday Life
- 4. What do waves need to travel
- 5. Star Wars Video

through?

- 6. Particle Diagrams
- 7. Sound Wave Group Demo

Warm Up

Sit with you
 Slinky Partner
 and take out
 your slinky lab.

Standards

2.1 Wave Behavior: I can explain
and model the behavior of waves
including interactions between
two waves and predict behavior.
2.2 Sound: I can determine how

! sound will travel and predict! behavior between one or more! sources of sound

! through different mediums.

2.3 Light Behavior: I can determine the interaction of light waves and predict behavior

Procedure Practice: Write a procedure of how to walk from my room to the language hall

What will happen to the wave after the two waves meet (middle) and after they meet (after)?

What do waves need?

Waves need a medium

Does sound travel faster through steel, wood, water, air or space?

Particle Diagrams

Physics- Tuesday, November 5th

Schedule

- 1. Particle Diagrams and Particle Demos
- 2. Sound Wave Group Demo

Warm Up

Take out your notebook!

Standards

- 2.1 Wave Behavior: I can explain
 and model the behavior of waves
 including interactions between
 two waves and predict behavior.
- 2.2 Sound: I can determine how sound will travel and predict
- ! behavior between one or more
- sources of sound
 2.3 Light Behavior: I can
- determine the interaction of light waves and predict behavior
- ! through different mediums.

Try it as a group

1 student- sound wave

Make if from one side to another- but must go from one particle to another

Dominoes?

Physics- Tuesday, November 5th

Schedule

- 1. Particle Diagrams and Particle Demos
- 2. Sound Wave Group Demo

Warm Up

Take out your notebook!

- 2.1 Wave Behavior: I can explain
 and model the behavior of waves
 including interactions between
 two waves and predict behavior.
- 2.2 Sound: I can determine how sound will travel and predict
- ! behavior between one or more
- sources of sound
 2.3 Light Behavior: I can
- determine the interaction of light waves and predict behavior
- ! through different mediums.

Compare particle diagrams

But why can't I hear it as well through brick?

Amplitude is different from speed. Amplitude is LOUDNESS

Big Ideas:

- More dense, faster to move through
- Loudness = Amplitude

Physics- Wednesday, November 6th

Schedule

- 1. Sound Bath
- 2. Sound Wave Exploration
- 3. Class
 Consensus
 Circle
- 4. Doppler Effect

Warm Up

Take out your notebook and find somewhere to sit!

- 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between
- two waves and predict behavior.

 2.2 Sound: I can determine how
- ! sound will travel and predict
 ! behavior between one or more
- sources of sound
- 2.3 Light Behavior: I can determine the interaction of light
- waves and predict behavior through different mediums.

What does sound "look like"

Tuning Forks- Drums and Water Observations

Observations

- Frequency?
- Loudness?
- Compare splashes and vibrations of salt

Consensus Meeting

Purpose: To formally and informally discuss findings from a scientific discovery.

Goal: Share your findings. Listen to others. Experience discourse and disagreeing. Find out what you agree on.

- Timed 15 minutes.
- Student led discussion- I will not intervene at any time (except to put students on mute) but will be taking notes on discussion and keeping track of which students speak.
- Questions need to be said out loud before we start. This is an opportunity to talk!

https://academo.org/demos/virtual-oscilloscope/

Sound Waves Consensus Circle

Questions to Answer:

- What did you notice about frequency and loudness when the tuning forks got close to the salt? To the water?
- Why do you think this is happening?
- Why are the tuning forks made of steel and not another material?
- Do you think the size or material of the water containers mattered?
- What situations in real life can you relate this to?
- Sources of errors? How to make it more controlled?

Sentence Stems:

- (Name), what do you think?
- I agree/disagree because...
- What do you mean by that?
- Does anyone want to respond to this idea?
- What is your evidence?
- Can you give me an example?
- Why do you think that?
- The next question to discuss is...

Physics- Thursday, November 7th

Schedule

- Consensus Circle Wrap Up
- Doppler Effect
- 3. Waves and Sound

Assessment

Warm Up

Question: What were some positives from the consensus from yesterday? What can your class work on?

- I 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
- 2.2 Sound: I can determine how ! sound will travel and predict
- I behavior between one or more sources of sound
- 2.3 Light Behavior: I can determine the interaction of light waves and predict behavior
- ! through different mediums.

Doppler Effect

- Speaker Spinning Demo
- Model
- Discuss
- Video

$$f' = \frac{V}{(V - V_s)}$$

Work on Waves and Sound Assessment

Due MONDAY beginning of class

Physics- Friday, November 8th

Schedule

1. Waves and Sound Assessment Due Monday beginning of class

Warm Up

 Take out your wave and sound assessment.

Standards

2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
2.2 Sound: I can determine how sound will travel and predict
behavior between one or more sources of sound
2.3 Light Behavior: I can

determine the interaction of light

waves and predict behavior through different mediums.

Physics- Monday, November 11th

Schedule

- Waves and Sound Assessment Turn In
- What's a laser& Laser Safety
- 3. Light Exploration
- 4. Class
 Conclusons

Warm Up

 Take out your wave and sound assessment.

- 2.1 Wave Behavior: I can explain
 and model the behavior of waves
 including interactions between
 two waves and predict behavior.
- 2.2 Sound: I can determine howsound will travel and predict
- ! behavior between one or more sources of sound
- 2.3 Light Behavior: I can determine the interaction of light
- waves and predict behavior through different mediums.

Laser Safety

- Do not EVER direct them across the room or at someone (eyes or body)
- You will have one warning and then be sent out
- Do not steal the lasers- we had one stolen last year :(

Light Waves Exploration

Four "Stations"

Mirrors, Lenses, Prisms and Color

How does the flashlight and laser interact through each based on shape? What happens when you look through it?

Physics- Wednesday, November 13th

Schedule

- Light
 Exploration
 Wrap Up
- 2. Class Conclusions
- 3. What is light?
- 4. Reflection Lab

Warm Up

 Take out your notebook with your observations from Monday!

- 2.1 Wave Behavior: I can explain
 and model the behavior of waves
 including interactions between
 two waves and predict behavior.
- 2.2 Sound: I can determine how sound will travel and predict
- i behavior between one or more sources of sound
 - 2.3 Light Behavior: I can determine the interaction of light
- waves and predict behavior through different mediums.

Conclusions: What is the difference in the image or reflection?

Lenses: Convex vs. Concave vs. Flat

Mirrors: Convex vs. Concave vs. Flat

Prisms: How does the shape affect the light? At least 4 examples

Color: How do the color lenses affect the light? At least 4 examples

Do waves carry energy, particles or both?

CER

If waves need a medium to travel through, why can we see light from space?

Physics- Thursday, November 14th

Schedule

- 1. Pre-Lab Check
- 2. Groups
- 3. Lab Intro
- 4. Data
- 5. Work on final product (1 per group)

Warm Up

 Take out your Reflection Lab and notebook

- 2.1 Wave Behavior: I can explain
 and model the behavior of waves
 including interactions between
 two waves and predict behavior.
- 2.2 Sound: I can determine how sound will travel and predict
- ! behavior between one or more! sources of sound
- 2.3 Light Behavior: I can determine the interaction of light
- waves and predict behaviorthrough different mediums.

Lab Report

- On copy paper or graph paper
- 1 per group
- Neat, organized, outlined in pen or marker.
- All components of the lab

Physics- Friday, November 15th

Schedule

Finish
 Reflection Lab due at the end
 of the hour

Warm Up

Take your
 Reflection Lab
 and notebook

Standards

2.1 Wave Behavior: I can explain
and model the behavior of waves
including interactions between
two waves and predict behavior.
2.2 Sound: I can determine how

behavior between one or more sources of sound

! sound will travel and predict

2.3 Light Behavior: I can determine the interaction of light waves and predict behavior

! through different mediums.

Physics- Monday, November 18th

Schedule

- Reflection Lab
 Peer Rubric
 Assessment
- 2. Refraction Lab Pre-Lab

Reflection Lab due Thursday

Warm Up

Take your
 Reflection Lab
 write up and sit
 with your
 partner.

- 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
- ! 2.2 Sound: I can determine how! sound will travel and predict! behavior between one or more! sources of sound
- 2.3 Light Behavior: I can
 determine the interaction of light
 waves and predict behavior
 through different mediums.

What are sources of error?

Physics- Tuesday, November 19th

Schedule

Refraction Lab
 Pre-Lab due
 beginning of
 class
 Wednesday

Refraction Lab due Friday- Individual

Warm Up

Take your
 Refraction Lab
 and sit with
 your chosen
 group/partner

Standards

! 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.

2.2 Sound: I can determine howsound will travel and predictbehavior between one or moresources of sound

2.3 Light Behavior: I candetermine the interaction of lightwaves and predict behaviorthrough different mediums.

Pre-Lab Requirements

- Purpose- One sentence in your own words
- Background- Theory of the Law of Refraction (drawn and explained)
- Materials
- Procedure
- Set Up/Diagram with labels
- Variables- Independent, Dependent, Controls with explanations
- Data Table

- 1. Izzy, Cam, Alex
- 2. Sia, Brenna
- 3. Jack, Evan
- 4. Smilee, Ashley, Kimber
- 5. Max, Josh R
- 6. Zach, Cara
- 7. Jaelyn, Samantha, Mikayla
- 8. Rema, Farrah
- 9. Niah, Amarea, Faith
- 10. Teddy, Nathan
- 11. Emily, Madison, Josh G
- 12. Javonn

- 1. Evan
- 2. Isaiah, Megan, Kory
- 3. Tyler, Lane, Jibril
- 4. Iniya, CJ, Laila
- 5. Daniel, Gabe
- 6. Lauren, Claire
- 7. Leslie, Ahjaynay, Nora
- 8. Christian, Stephanie
- 9. Steven, Joe
- 10.Q
- 11. Shane
- 12. Keziah

- 1. Joey, Jake
- 2. Yamama, Hufsah
- 3. Emma, Lily
- 4. Gavin, Richard
- 5. Angelo, Nico
- 6. Joanna, Shannon
- 7. Andre, Luke
- 8. Monet, AD, Citlaly
- 9. Devonte, Liam, Sydney
- 10. Emmy, Kelli
- 11. Austin, Skye, Bryseida

- 1. Hannah, Teagan
- 2. Adam, Connor G
- 3. Nitya, Madilyn, Alyssa
- 4. Nathan, Connor R
- 5. Anthony P, Jamiere, Larry
- 6. Brian, Tanner
- 7. Jessie, Ligia
- 8. Jack, Natalie
- 9. Sade, Mya
- 10. Nick
- 11. Jake, Drevon
- 12. Jacob, Anthony E

Physics- Wednesday, November 20th

Schedule

- 1. Pass back papers
- 2. Refraction Lab Data
- 3. Work on Lab Report

Refraction Lab due

! Friday (with draft)-Individual

Warm Up

- Take your **Refraction Lab**
 - and sit with
 - your
 - group/partner

- I 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
- ! 2.2 Sound: I can determine how I sound will travel and predict behavior between one or more sources of sound
- 2.3 Light Behavior: I can ! determine the interaction of light I waves and predict behavior
- I through different mediums.

Physics- Thursday, November 21st

Schedule

- 1. Review Lab

 "Report"

 Expectations

 and how to find
 refraction index
- 2. Work on
 Refraction Lab
 Report

! Refraction Lab due ! Friday (with draft)-

Individual

Warm Up

Take your
 Refraction Lab
 and sit with
 your
 group/partner

- 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
- 2.2 Sound: I can determine how sound will travel and predict behavior between one or more sources of sound
- 2.3 Light Behavior: I can
 determine the interaction of light
 waves and predict behavior
 through different mediums.

Post Data

- Find refraction index for all data points (water and vegetable oil)
- Take out any clear outliers
- Find average refraction index for water and vegetable oil
- Find percent error for each using the known/theoretical values on back
- Show your teacher
- Work on your FINAL DRAFT on copy and/or graph paper

Physics- Friday, November 22nd

Schedule

- 1. Review Expectations and Rubric
- 2. Work on Refraction Lab Report

Pefraction Lab due

Monday end of

Class (with draft

attached)

Warm Up

Take your
 Refraction Lab
 and sit with
 your
 group/partner

- 2.1 Wave Behavior: I can explain and model the behavior of waves including interactions between two waves and predict behavior.
- 2.2 Sound: I can determine howsound will travel and predictbehavior between one or moresources of sound
- 2.3 Light Behavior: I can
 determine the interaction of light
 waves and predict behavior
 through different mediums.

Physics- Monday, November 25th

Schedule

- 1. Turn in i refraction lab by i the end of class i
- 2. Start to work on final model for light (Part 1)

Warm Up

 Take out your refraction lab

Standards

2.3 Light Behavior: I can determine the interaction of light waves and predict behavior through different mediums.

Physics- Tuesday, November 25th

Schedule

- 1. Turn in refraction lab (if you have not already)
- 2. Work on final model for light

Warm Up

Find somewhere to sit and take out your notebook

Standards

2.3 Light Behavior: I can determine the interaction of light waves and predict behavior through different mediums.