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The 12 Basic Functions (Parent Functions)

Many situations in the world that people 
study and collect data on follow one of the 

following 12 patterns.  By recognizing a 
general pattern, or what we call the Parent 

Function, and then algebraically 
manipulating the function, you can almost 

come up with an exact match.  Some people 
get paid a lot of money to do this!    
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The 12 Basic Functions:

The Identity Function
y = x

The Squaring Function
y = x2

The Cubing Function
y = x3

The Reciprocal Function
y = 1/x

The Absolute Value Function
y = ΙxΙ

The Square Root Function
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The 12 Basic Functions continued:
The Exponential Function

y = ex
The Natural Log Function

y = lnx
The Logistic Function

The Sine Function
y = sinx

The Cosine Function
y = cosx

The Greatest Integer Function
y = [x]

  

Slide 6 / 152

  

  

  

  

  

  

  



Transforming Functions

y = a f( bx ∓ c) ± d

Return to
Table of
Contents

(Or making parent functions match data.)
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Goals and Objectives
Students will be able to transform any function, 

including parent functions, algebraically and 
graphically.

Transforming Functions
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Why do we need this?
Many different factors in life affect data and 

information.  These situations can be modeled by 
functions, but not all are the same.  The 12 basic 

functions represent common graphs of information.  
Transformations of these functions get us closer to a 
result and even apply to situations that are not easily 

representable in a common form. 

Transforming Functions
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Explore this on your own! Pull out a graphing calculator!

Transforming Functions - activity

y = a f( bx ∓ c) ± d

Choose one of the Basic Functions.  Try adding and subtracting numbers inside 
and outside of the function.  Then multiply and divide different functions by 
numbers in different places.   What happens to the graph?  
Make a list:

a makes the function _____________________
 
b makes the function _____________________

c makes the function _____________________

d makes the function _____________________

Te
ac

he
r
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Now, we are going to formalize your results 
and explore each part individually.

Transforming Functions
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Vertical Shifts

Transforming Functions
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Transforming Functions

Vertical Shifts occur when a constant is 
added to or subtracted from OUTSIDE 

of the function.

The function will be translated 
UP d if d is added. 

The function will be translated 
DOWN d if d is subtracted. <

+ d - d

<

Te
ac

he
r
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Try it on 
your 

calculator!

Transforming Functions

Use the function y = x2.  Write the new 
equation and then enter it in your calculator.

a)  up 4

b)  down 5

c)  down 3

d)  up 2

Te
ac

he
r
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Let the graph of f(x) be: Graph y = f(x) + 2:

Transforming Functions

Te
ac

he
r

  

Slide 15 / 152

  

  

  

  

  

  

  



1 Given the graph of h(x), which of the following graphs is y = h(x) - 1?

A B

C D

Transforming Functions

Te
ac

he
r
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2 Given the graph of h(x), which of the following is h(x) + 2?

A
B

C D

Transforming Functions

Te
ac

he
r
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Transforming Functions

Horizontal Shifts
y =  f(x ∓ c)
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Transforming Functions
Horizontal Shifts occur when a 

constant is added to or subtracted 
INSIDE of the function.

The function will be translated 
LEFT c if c is added INSIDE. 

The function will be translated 
RIGHT c if c is subtracted 

INSIDE. 
<

+ c - c
Notice the direction is opposite the sign of c.

y =  f(x ∓ c)

Te
ac

he
r

<

  

Slide 19 / 152

  

  

  

  

  

  

  

Transforming Functions

Try it on 
your 

calculator!

Use the function y = x3.  Write the new 
equation and then enter it in the calculator.

a)  right 4

b)  left 5

c)  left 3

d)  right 2

Te
ac

he
r
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Transforming Functions

Let the graph of f(x) be: Graph y = f(x + 2): Te
ac

he
r
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3 Given the graph of h(x), which of the following graphs is y = h(x - 1)?

A B

C D

Transforming Functions

Te
ac

he
r
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4 Given the graph of h(x), which of the following graphs is h(x + 3)?

A
B

C D

Transforming Functions

Te
ac

he
r
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Transforming Functions

Transform g(x) as indicated:

1.  h(x) = g(x) + 3

2.  r(x) = g(x) - 5

3.  p(x) = g(x - 4) + 2

4.  m(x) = g(x + 3)

5.  b(x) = g(x - 5) + 4

Te
ac

he
r
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Reflections
Transforming Functions
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Transforming Functions

Reflection over the x-axis: Reflection over the y-axis:

x

y

x

y
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Transforming Functions

Try it on 
your 

calculator!

What happens when you add in negatives?  Look 
at the following...

a)  y = -x2  e)  

b)  y = (-x)2 f)

c)  y = -x3 g)

d) y = (-x)3 h)  

Te
ac

he
r
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Let the graph of f(x) be: Graph y = f(-x): 

Transforming Functions

Te
ac

he
r
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Let the graph of f(x) be: Graph y = -f(x): 

Transforming Functions

Te
ac

he
r
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Transforming Functions

Transform g(x) as indicated:

1.  h(x) = -g(x) + 4

2.  r(x) = g(-x) - 2

3.  p(x) = -g(x - 1) + 2

4.  m(x) = -g(x + 2)

5.  b(x) = g(-x) - 4

Te
ac

he
r

  

Slide 30 / 152

  

  

  

  

  

  

  



5 Given the graph of h(x), which of the following is -h(x)?

A B

C D

Transforming Functions

Te
ac

he
r
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6 Given the graph of h(x), which of the following graphs is y = h(-x)?

A B

C D

Transforming Functions

Te
ac

he
r
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Transforming Functions

Vertical 
Stretch & Shrink
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Transforming Functions
Vertical Stretches and Shrinks occur 

when a constant is multiplied 
OUTSIDE of a function.

The parent function y = f(x) is :
stretched if |a| > 1

shrunk if 0 < |a| < 1

Stretches and shrinks are the first 
transformation that do not yield 

congruent figures.

Note:  Notice how the x-intercepts DO NOT change.

Te
ac

he
r
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Transforming Functions

Try it on 
your 

calculator!

Stretch or shrink the following functions as indicated.  Graph the 
parent function first, and then the transformed function in the 
same window.  
  Te

ac
he

r
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Transforming Functions

Let the graph of f(x) be:

Graph y = 2f(x):

Te
ac

he
r
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Transforming Functions

Let the graph of f(x) be:

Graph y =(1/3 )f(x): 

Te
ac

he
r
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7 Given the graph of h(x), 
which of the following 
graphs is y = 2h(x)?

A B

C
D

Transforming Functions

Te
ac

he
r
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8 Given the graph of h(x), 
which of the following 
graphs is y =   h(x)?

A B

C
D

Transforming Functions

Te
ac

he
r
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Transforming Functions

Horizontal 
Stretch & Shrink
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Transforming Functions

Horizontal Stretches and Shrinks 
occur when a constant is multiplied to 

x INSIDE a function.

The parent function y = f(x) is:
shrunk if |b| > 1

stretched if 0 < |b| < 1

Note:  Notice how the y-intercepts DO NOT change.

Try it on 
your 

calculator!

Te
ac

he
r
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Transforming Functions

Try it on 
your 

calculator!

Stretch or shrink the following functions as indicated.  Graph the 
parent function first, and then the transformed function in the same 
window.  
  

Te
ac

he
r
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Transforming Functions

Let the graph of f(x) be:

Graph y = f(2x):

Te
ac

he
r
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Transforming Functions

Let the graph of f(x) be:

Graph y = f(.5x):

Te
ac

he
r
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9 Given the graph of h(x), 
which of the following 
graphs is y = h(2x)?

A B

C
D

Transforming Functions

Te
ac

he
r
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Transforming Functions

Given the graph of h(x), which of 
the following graphs is y = h( 1/2x)?

A B

C D

Te
ac

he
r
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10 Given the graph of h(x), 
which of the following 
graphs is y = h(1/2x)?

A B

C
D

Transforming Functions

Te
ac

he
r
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Combining 
Transformations
What goes first?  Any thoughts?

Transforming Functions
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Transforming Functions

To combine transformations, follow order of operations:
Horizontal Stretch of b

Horizontal Slide of c

Vertical Stretch of a

Vertical Shift of d

y = a f( bx ∓ c) ± d

Te
ac

he
r
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Transforming Functions

Let the graph of f(x) be:

Graph y = 2f(.5x+1) - 2

Remember...

Work slowly and use a 

different colored pencil 

for each transformation 

to help!

Horizontal Stretch of b

Horizontal Slide of c

Vertical Stretch of a

Vertical Shift of d

Te
ac

he
r
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Transforming Functions Remember...
Let the graph of f(x) be:

Graph y =(-1/3 )f(2x + 1) + 2: 

Work slowly and 

use a different 

colored pencil fo
r 

each transformation 

to help!

Horizontal Stretch of b

Horizontal Slide of c

Vertical Stretch of a

Vertical Shift of d

Te
ac

he
r
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Transforming Functions

Let the graph of f(x) be:

Graph y = (-1/2)f(-x + 2) +1:

Remember...
Horizontal Stretch of b

Horizontal Slide of c

Vertical Stretch of a

Vertical Shift of d

Work slowly and 

use a different 

colored pencil fo
r 

each transformation 

to help!

Te
ac

he
r
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11 Given the graph of h(x), 
which of the following 
graphs is y = 2h(-x + 1) - 3?

A B

C D

Transforming Functions

Te
ac

he
r
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12 Given the graph of h(x), 
which of the following 
graphs is 
y = -0.5h(2x - 1) + 2?

A

B

C

D

Transforming Functions

Te
ac

he
r

  

Slide 54 / 152

  

  

  

  

  

  

  



Transforming Functions

Transforming Parent 
Functions

y = sinx
y = 5sin(6x) + 2
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Transforming Functions Remember the 12 basic functions...

The Identity Function
y = x

The Squaring Function
y = x2

The Cubing Function
y = x3

The Reciprocal Function
y = 1/x

The Absolute Value Function
y = ΙxΙ

The Square Root Function
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Transforming Functions continued...

The Exponential Function
y = ex

The Natural Log Function
y = lnx

The Logistic Function

The Sine Function
y = sinx

The Cosine Function
y = cosx

The Greatest Integer Function
y = [x]
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Transforming Functions

y = a f( bx ∓ c) ± d
You have already transformed some of the 12 basic functions.  Let's 

apply combinations of these functions to the first 4, the other 8 will be 
addressed later.

The Squaring Function
y = x2

The Cubing Function
y = x3

The Absolute Value Function
y = ΙxΙ

The Square Root Function
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Transforming Functions

Transform y = x2 into the following:
As the function changes, what happens to 
the domain and range?

Note:  when studying parabolas, af(bx + c) + d becomes af(bx + h) + k, where (h, k) is the 
vertex of the parabola.

Te
ac

he
r
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Transforming Functions

Transform y = x3 into the following:
As the function changes, what happens to 
the domain and range? Te

ac
he

r
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Transforming Functions

Transform y = ΙxΙ into the following:
As the function changes, what happens to 
the domain and range?

Note:  when studying the absolute value function, 
af(bx + c) + d becomes af(bx +h) + k, where (h, k) is 
the vertex of the absolute value function.

Te
ac

he
r
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Transforming Functions

Transform                into the following:
As the function changes, what happens to the 
domain and range? Te

ac
he

r
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Transforming Functions

Transform                into the following:
Graph on the board and then check with your 
calculator!  What happened? Te

ac
he

r
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13 Which of the following is the equation for the graph shown?

A

B

C

D

Transforming Functions

Te
ac

he
r
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14 Which of the following is the equation for the graph shown?

A

B

C

D

Transforming Functions

Te
ac

he
r
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15 Which of the following is the equation for the graph shown?

A

B

C

D

Transforming Functions

Te
ac

he
r
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16 Which of the following is the eqution for the graph shown?

A

B

C

D

Transforming Functions

Te
ac

he
r

  

Slide 67 / 152

  

  

  

  

  

  

  

Operations with 
Functions

Return to
Table of
Contents

  

Slide 68 / 152

  

  

  

  

  

  

  

Goals and Objectives

Operations with 
Functions

Students will be able to manipulate multiple 
functions algebraically and simplify resulting 
functions.
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Why do we need this?

Operations with 
Functions

In this unit, we have graphically explored 
transformations of functions.  

Sometimes, data is more complex and is 
combinations of different functions.  
Algebraically manipulating functions 

allows us to combine different functions 
together and results in many more 

options for representing real life 
situations.
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Functions can be combined to make other functions.
Operations with 

Functions

Here are the properties of combining functions:

Adding functions:

Subtracting functions:

Multiplying functions:

Dividing functions:

Te
ac

he
r
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Operations with 
Functions Given: and

Find:              

Simplify your 
answers as 
much as 
possible.

What 
happens to 
the domain?

Te
ac

he
r
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17 Given f(x) = 3x2 + 2x and g(x) = x, find h(x) = (f + g)(x)

A

B

C

D

Operations with 
Functions

Te
ac

he
r
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Operations with 
Functions

Given                          and               , find h(x) if 

A

B

C

D

Te
ac

he
r
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18 Given f(x) = 3x2 + 2x and g(x) = x, find h(x) if h(x) = f(x) - g(x).

A

B

C

D

Operations with 
Functions

Te
ac

he
r

  

Slide 75 / 152

  

  

  

  

  

  

  



19 Given f(x) = 3x2 + 2x and g(x) = x, find h(x) if 

A

B

C

D

Operations with 
Functions

Te
ac

he
r
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20 Given f(x) = 3x2 + 2x and g(x) = x, find h(x) if h(x) = 2f(x) - xg(x).

A

B

C

D

Operations with 
Functions

Te
ac

he
r
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Operations with 
Functions

Given                     and               , find:

a)  (f + g)(x) b)  (f - g)(x) c)  (fg)(x)   d)  

What is the domain of each?

Te
ac

he
r
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21 Find the domain of (f + g)(x) if 

A

B

C

D

Operations with 
Functions

Te
ac

he
r

(-∞, ∞)

[0, ∞)

(-∞, 0) U (0, ∞)

(-∞, 0]
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22 Find the domain of                if f(x) = x2 and g(x) = x - 4.

A

B

C

D

Operations with 
Functions

Te
ac

he
r

(-∞, 4) U (4, ∞)

(-∞, 0) U (0, ∞)

(4, ∞)

(-∞, 4)
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23 Find the domain of (fg)(x) if f(x) =      and g(x) = 

A

B

C

D

Operations with 
Functions

Te
ac

he
r

(-∞, 3) U (3, ∞)

[-3, 0) U (0, ∞)

(-∞, -3) U (3, ∞)

(-∞, ∞)
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Operations with 
Functions

Given                          and                , find:

a)  (f + g)(2) b)  (f - g)(3) c)  (fg)(5) d)  

You may also be asked to find values of combined 
functions when given specific values for x.

Te
ac

he
r
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24 Given f(x) =          and g(x) = x - 12, find (f - g)(4).

A

B

C

D

Operations with 
Functions

Te
ac

he
r

-6

-4

12

10
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25 Given f(x) =             and g(x) =    , find (fg)(6).
A

B

C

D

Operations with 
Functions

Te
ac

he
r

1728

-864

864

1288
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26 Given f(x) =              and g(x) =          , find

A

B

C

D

Operations with 
Functions

Te
ac

he
r

undefined
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Composite functions

Return to
Table of
Contents

or 
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Composite functions

Goals and Objectives
Students will be able to recognize 
function notation and correctly unite 
two or more functions together to 
create a new function.
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Composite functions

Why do we need this?
Life is complicated at times.  On many occasions, multiple 

situations happen to something before it obtains a final result.  
For example, you take extra food off of your plates before you 
put them in the dishwasher.  These are two functions that go 

\together to obtain a result.
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Composite functions

Def:  Composite functions exist when one function is "nested" 
in the other function.

There are 2 ways of writing a composite function:

Each form is read "f of g of x" and both mean the same thing.
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Composite functions

To simplify a composite of functions, substitute one function 
into the other in place of "x" and simplify.

f(g(x)) = f(g(x))

Given:

Find:  f(g(x))  and  g(f(x))
g(f(x)) = g(f(x))

= 3(g(x))2 + 2(g(x))

= 3(4x)2 + 2(4x)

= 3(16x2) + 8x

= 48x2 + 8x

= 4(f(x))

=4(3x2 + 2x)

= 12x2 + 8x

Te
ac

he
r
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Composite functions

f(g(x)) = f(g(x))

Given:

Find:  f(g(x))  and  g(f(x))

g(f(x)) = g(f(x))

Te
ac

he
r
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Composite functions

To simplify composite functions with numerical 
values, substitute the number into the "inner" 

function, simplify, and then substitute that value in 
for the variable in the "outer" function.

Given:

Find:

Te
ac

he
r
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27 If f(x) = x2 + 1 and g(x) = 3x - 1, find the value of f(g(2)).

A

B

C

D

Composite functions

Te
ac

he
r
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28 Find f(g(x)) if 

A B C D

Composite functions

Te
ac

he
r
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29 Find 

A

B

C

D

Composite functions
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ac
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r
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30 Find 

A

B

C

D

Composite functions

Te
ac

he
r
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31 Find g(f(-2)) if A

B

C

D

Composite functions

Te
ac

he
r
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32 Find f(g(-3)) if f(x) = 3x2 + 2x - 3 and g(x) = x - 2

A

B

C

D

Composite functions

Te
ac

he
r

62

-88

82

19
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33 Find the value of 
A

B

C

D

Composite functions

Te
ac

he
r

2

1

0

-1
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Inverse Functions

Return to
Table of
Contents
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Goals and Objectives

Inverse Functions

Students will be able to recognize and find an 
inverse function:   
 a)  using coordinates,
 b)  graphically and 
 c) algebraically.  
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Inverse Functions

Why do we need this?
Sometimes, it is important to look at a problem from 
the inside out.  Plus undoes minus.  Multiply undoes 
divide.  In order to look deeply into different problems, 
we must try to see things from the inside out.  Inverse 

functions undo original functions.
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Inverse Functions

Def:  An inverse function is a function that undoes another function. 
The notation for the inverse of         is             .

You can prove that a function is an inverse of another using the 
following relationship:

Read, "the inverse of f of x."

Example: Prove that f(x) and g(x) are inverse functions.

Te
ac

he
r
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Inverse Functions

You can also prove that two functions are inverses by GRAPHING.  
The graph of an inverse is the reflection of the function over y = x.

The following functions are 
inverses of each other.  Look 
at their graphs and make a 
conjecture about the x and y 
values of inverse functions.

Te
ac

he
r
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Inverse Functions

The inverse of a function is the reflection over y = x. This will result 
in the switching of x and y values.
Examples: 

a)  Find the inverse of:  b)  Find the inverse of: 

f(x)= {(1, 2), (3, 5), (-7, 6)} X Y

3 2

4 4

5 -5

6 7

Te
ac

he
r
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34 What is the inverse of {(1, 4), (5, 3), (2, -1)}?

A {(4,1), (3,5), (2,-1)}  

B {(-1,-4), (-5,-3), (-2,1)} 

C  {(4,1), (3,5),(-1,2)} 

D  {(-4,-1), (-3,-5), (1,-2 )}

Inverse Functions

Te
ac

he
r
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35 If the inverse of a function is {(1, 0), (3, 3), (-4, -5)}, what was 
the original function?

A {(0,1), (3,3), (-5,-4)} 

B {(-1,-4), (-5,-3), (-2,1)} 

C {(0,-1), (-3,-3),(4,5)}  

D {(0,1), (3,3), (-4,-5)} 

Inverse Functions

Te
ac

he
r
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36 What is the inverse of: A B

C D

Inverse Functions

Te
ac

he
r
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37 Will the inverse of the following points be a function?  Why or 
why not?

Yes

No

Inverse Functions

Te
ac

he
r
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Inverse Functions
Draw the inverse of the given function.

Is the inverse a function? Why or why not?

Te
ac

he
r
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Inverse Functions

Draw the inverse of the given function.

Is the inverse a function? Why or why not?

Te
ac

he
r
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Inverse Functions

Just like the Vertical Line Test, there is a simple way to determine if a function has an inverse just from 
looking at its graph.

Def:  The Horizontal Line Test is used to determine if a function has an 
inverse.  Just like the Vertical Line Test, if a horizontal line crosses the 
function more than once, it WILL NOT have an inverse.

Move this line to check:

Te
ac

he
r
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Inverse Functions

Will the inverse of the given function be a function?

Yes

No

Move this line to check:

Te
ac

he
r
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Inverse Functions

Which graph is the inverse of the given 
function?

A B C D

Te
ac

he
r
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38 Which graph is the inverse of the 
given function?

A BCD

Inverse Functions

A B C D

Te
ac

he
r
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Inverse Functions

A

B

C D

Which graph is the 
inverse of the given 
function?
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39 Which graph is the inverse 
of the given function?A

B

C D

Inverse Functions

Te
ac

he
r
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40 Which graph is the 
inverse of the given 
function?

Inverse Functions

Te
ac

he
r

C DBA
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41 Will the inverse of f(x)= 2x2 - 23x + 4 be a function?

Yes

No

Inverse Functions

Te
ac

he
r
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Inverse Functions

Finding the inverse of a function algebraically:
Knowing that the inverse of a function switches x and y values, we can 
take this concept further when given an equation.

Given: Switch x and y. Solve for y: Inverse function:
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Inverse Functions

Find the inverse of the following functions.
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42 Which of the following choices is the inverse of f(x)?

A

B

C

D

Inverse Functions

Te
ac

he
r
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43 Which of the following is the inverse of f(x)?

A

B

C

D

Inverse Functions

Te
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44 Find the inverse of y = 2x2 - 4

A

B

C

D

Inverse Functions

Te
ac

he
r

  

Slide 124 / 152

  

  

  

  

  

  

  

Piecewise 
Functions

Return to
Table of
Contents
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Piecewise 
Functions

Goals and Objectives
Students will be able to recognize Piecewise 
Functions, graph them and correctly 
evaluate them at given points. 
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Why do we need this?
Piecewise 
Functions

Recognize this problem? 
 

A cell phone carrier charge $70 for the first 1000 
minutes and $.25 for each minute after the first 1000.  

We all deal with piecewise functions and don't know 
it.  Many common situations have limits, overages 

and maybe several parts.  Knowing how to analyze 
these problems makes us smart consumers.
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Piecewise 
Functions Let's examine the previous situation...

A cell phone carrier charge $70 for the first 1000 minutes and $.25 for 
each minute after the first 1000.

Time in Minutes 1000

D
o
ll
a
r
s 
c
h
a
r
g
e
d

70

Graphic Representation: In Mathematical Notation:

In words:

The graph starts as a 
constant graph of y = 70 and 
after x = 1000 the graph 
becomes 
y = .25(x - 1000) +70

Te
ac

he
r
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Piecewise 
Functions

Def:  A  Piecewise Function is a combination of other functions.

Notation:

Note:  There can be as many functions included as necessary.  
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Piecewise 
Functions Create the piecewise notation for the following graph.

if

if

Te
ac

he
r
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Piecewise 
Functions What is the domain and range of the function?

Domain:

Range:

Te
ac

he
r
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Piecewise 
Functions Create the piecewise notation for the following graph.

if

if

Te
ac

he
r
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Piecewise 
Functions What are the domain and range of the function?

Domain:

Range:

Te
ac

he
r
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Piecewise 
Functions

Create the piecewise notation for the following graph.

if

if

if

Te
ac

he
r
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Piecewise 
Functions State the domain and range of the function.

Domain:

Range:

Te
ac

he
r

  

Slide 135 / 152

  

  

  

  

  

  

  



Piecewise 
Functions

Te
ac

he
r

Graphing a piecewise function:

· Visualize the entire graph
of each individual piece

· Graph only the parts defined by x
(Be aware of endpoints being either open or closed.)

· Repeat for each part.
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Piecewise 
Functions What is the domain and range of the function?

Domain:

Range:

Te
ac

he
r
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Piecewise 
Functions

Graph: Te
ac

he
r
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Piecewise 
Functions

Graph: Te
ac

he
r

  

Slide 139 / 152

  

  

  

  

  

  

  

Piecewise 
Functions Evaluating Piecewise Functions

Piecewise Functions are evaluated exactly like we do 
regular functions.  The only difference is that you will 

need to decide which part of the function to use 
depending on the value of x you are given.

Find: 
a)  f(-3)
b)  f(5)
c)  f(1)
d)  f(-10)
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45 Find f(0) given:

Piecewise 
Functions

Te
ac

he
r
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46 Find f(1) given:

Piecewise 
Functions

Te
ac

he
r
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47 Find f(-11) given:

Piecewise 
Functions

Te
ac

he
r
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48 Find f(7) given:

Piecewise 
Functions

Te
ac

he
r
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49 Find f(2) given:

Piecewise 
Functions

Te
ac

he
r
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50 Find f(3) given:

Piecewise 
Functions

Te
ac

he
r
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Piecewise 
Functions Making Piecewise Functions Continuous

Def:  A continuous function  is one that has no breaks, jumps, 
holes and will have a value for each point in the domain. 

Is this function continuous?

Te
ac

he
r

  

Slide 147 / 152

  

  

  

  

  

  

  



Piecewise 
Functions We can make a piecewise function continuous by 

getting the open endpoint of the first equation to 
match the closed endpoint of the second.

The critical point is when x = 1.

1.  Set the pieces equal to each other.
2.  Plug in x.
3.  Solve for b.
4.  Write the new, continuous function.
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Piecewise 
Functions

Find the value of b that makes the function continuous.  
Rewrite the function.

1)  What is the critical point?

2)  Find b.

3)  Rewrite the function.

Te
ac

he
r
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Piecewise 
Functions Find the value of a that makes the function continuous.  

Rewrite the function.

1)  What is the critical point?

2)  Find a.

3)  Rewrite the function.

Te
ac

he
r
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This is the end of Working with Functions.
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