




# Unit 2 -Macromolecules

- Compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids.
- Analyze and evaluate the evidence regarding formation of simple organic molecules and their organization into long complex molecules having information such as the DNA molecule for self-replicating life.
- Investigate and explain cellular processes including homeostasis, energy conversions, transport of molecules, and synthesis of new molecules.



# Menu Menu



### **Macromolecule Characteristics**

Dehydration Synthesis & Hydrolysis

Carbohydrates

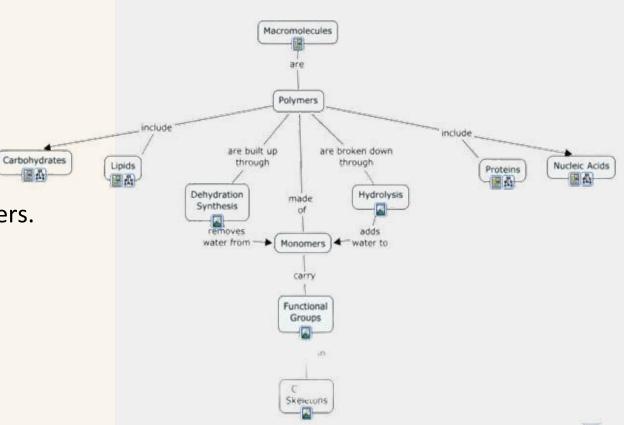
Lipids

Proteins/ Enzymes

**Nucleic Acids** 






# Macromolecules / Biomolecules



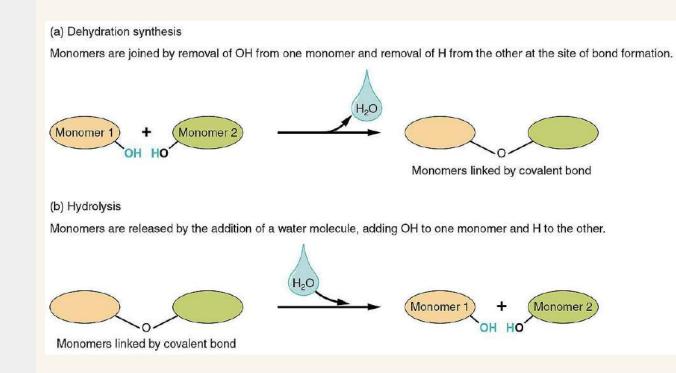
#### **Macromolecules**

#### **Characteristics -**

- Large organic molecules.
- Also called polymers.
- Made up of smaller "building blocks" called monomers.
- Biological Macromolecules are:
  - 1. Carbohydrates
  - 2. Lipids
  - 3. Proteins
  - 4. Nucleic acids (DNA and RNA)








# Dehydration Synthesis vs. Hydrolysis



### **Dehydration Synthesis & Hydrolysis –**

- Cells connect monomers to make macromolecules by a process called condensation or <u>dehydration synthesis</u> (removing a molecule of water).
- Cells break down macromolecules into monomers by a process called <u>hydrolysis</u>
   (adding a molecule of water)









# Carbohydrates



## 01

#### Characteristics

- Carbohydrates can range in size from small sugar molecules to large strands of sugar molecules bonded together. A biochemical test to indicate the presence of sugar –
   Benedict's solution (indicator) turns green, yellow, orange, or red when heated.
- Elements Used to Form:
  - 1. Carbon
  - 2. Hydrogen
  - 3. Oxygen

# 02

#### **Monomer** -

- 1. Monosa Monosaccharide
  - ☐ Called **Simple Sugars** (monomer).
  - ☐ Include: Glucose, Fructose & Galactose.
  - ☐ They have the same chemical formula,  $C_6H_{12}O_6$ , but have different structures.
  - ☐ These three sugars are structural isomers:
    - Glucose is found in sports drinks.
    - Galactose is called "milk sugar"
    - Fructose is found in fruits.
  - ☐ If the compound name ends in **ose** means it is a sugar.
  - ☐ In aqueous (watery) solutions,

    Monosaccharides *form ring structures*.
  - ☐ They are the main fuel that cells use for work.

# 03

#### **Disaccharide**

- 2. Disaccharide
  - ☐ A <u>disaccharide</u> is made of two sugar molecules joined together.
  - ☐ They are joined in the dehydration process.
  - ☐ There is a glycosidic bond between the two sugars.





# Carbohydrates Continued



#### 3. Polysaccharide

- ☐ Complex carbohydrates
- ☐ Composed of many sugar monomers linked together.
- ☐ Polymers of monosaccharide chains.
- ☐ Three types of polysaccharides are: starch, glycogen, and cellulose.
  - Starch in *iodine* (indicator) turns dark blue or black
    - Starch is an example of a polysaccharide in plants.
    - Plant cells store starch for energy.
    - Potatoes and grains are major sources of starch in the human diet.

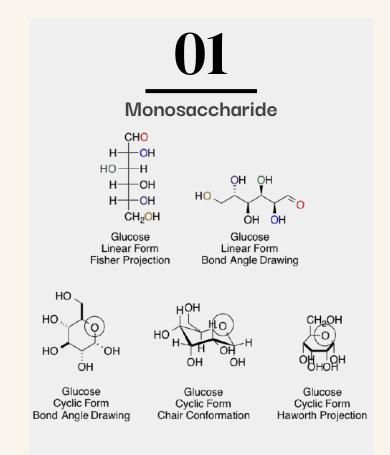
#### Glycogen

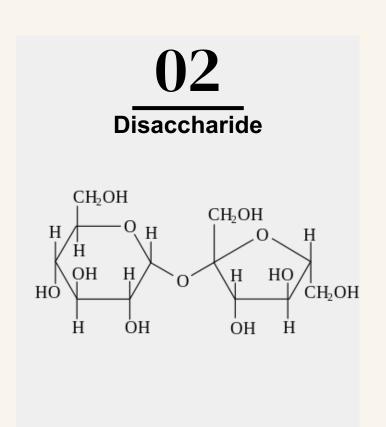
- Animals store excess sugar in the form of glycogen.
- Glycogen is similar in structure to starch because both are made of glucose monomers.

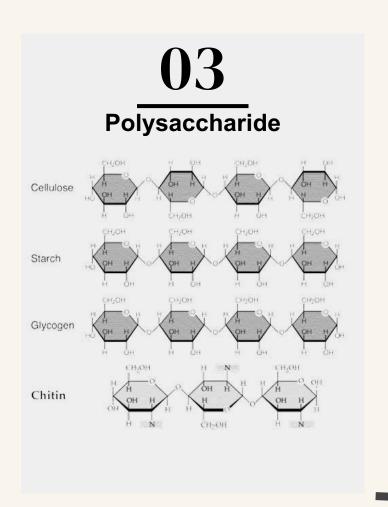
#### Cellulose

- Cellulose is the most abundant organic compound on Earth.
- It is the structural component of plants.
- It forms cable-like fibrils in the tough walls that enclose plants.
- Many animals cannot digest cellulose.
- It is also known as dietary fiber.

#### Chitin


- Chitin is made of glucose subunits linked together in a chain.
- Partly derived from non-sugars (nitrogen).
- Composes exoskeletons of insects, lobsters, and shrimp.
- The cell walls of fungi are also made from chitin.
- Chitin fibers are also used for dissolving sutures.











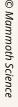





#### **Characteristics**

- Lipids are *hydrophobic* –"water fearing".
- Do not mix with water.
- Includes fats, waxes, steroids, oils & triglycerides.
- Stores the most energy.
- Composed of: C, H, & O
- Sudan (indicator) can turn a variety of colors in the presence of lipids.
- Most plant oils tend to be low in saturated fatty acids & exist as liquids at room temperature (oils).

#### **Functions**


- Long term energy storage
- Protection against heat loss (insulation)
- Protection against water loss
- Protection against physical shock
- Chemical messengers (hormones)
- Major component of membranes (phospholipids)

# 03

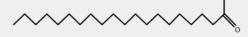
### **Structure - Fatty acids**

**Fatty Acids**: a long chain of Hydrogen and Carbon make up lipids. The exception to the monomer/polymer rule is lipids. Lipid base units are not considered monomers. One type of lipid or fat is made up of fatty acids and glycerol molecules in a 3:1 ratio. The bonding of three fatty acids to one glycerol molecule creates a triglyceride








# Types of Lipids



## 01

#### Saturated

1. Saturated Fatty Acid: if each Carbon is bonded by single bonds to other Carbons inside the fatty acid, the fatty acid is said to be saturated.

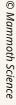






# 02

#### **Unsaturated**

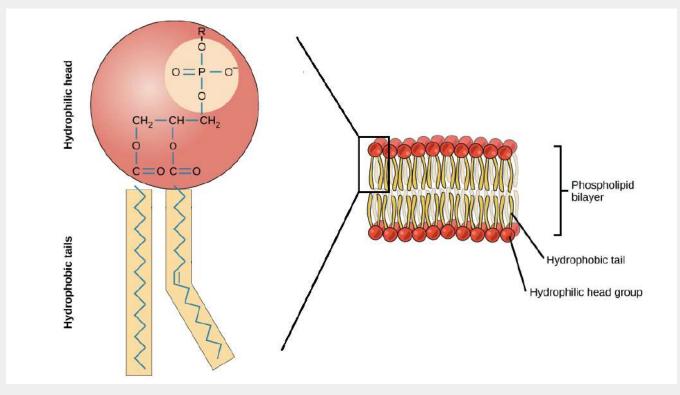

2. Mono or Unsaturated Fatty Acid:

If a double bond is present, then
it is said to be mono-saturated or
unsaturated.

## 03

### **Polysaturated**

- **3. Polyunsaturated Fatty Acid** More than one double bond
  - Most animal fats have a high proportion of saturated fatty acids & exist as solids at room temperature (butter, margarine, shortening).






# **Lipids Continued**



- **4. Phospholipids** Cell membranes are made of lipids called phospholipids. Controls what enters and leaves the cell
  - Phospholipids have a head that is polar
     & attract water (hydrophilic).
  - Phospholipids also have 2 tails that are nonpolar and do not attract water (hydrophobic)
  - Steroids -
    - ☐ The carbon skeleton of steroids is bent to form 4 fused rings.
    - ☐ Cholesterol is the "base steroid" from which your body produces other steroids.



**Phospholipids** 





## **Proteins**



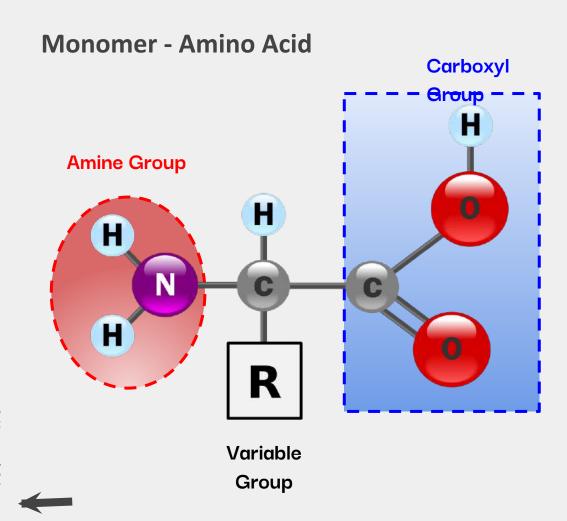
#### **Characteristics**

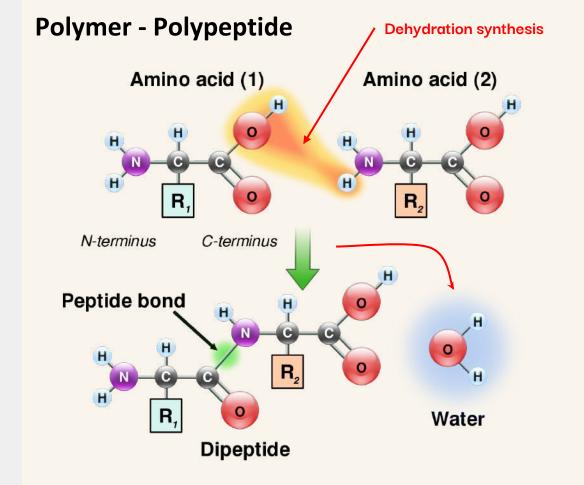
- Composed of
  - ☐ C, H, O, N, sometimes S
- Monomer
  - ☐ amino acids
    - 20 different (1 mod)
    - Most structural variation
- Polymer: Polypeptide
  - ☐ Covalent bonding links
    - Peptide Bond

# 02

#### **Functions**

- Essential to Life *Biuret* (indicator)
   turns purple/lavender with protein,
   pink with amino acid.
- Build structure
- Movement:
  - ☐ Makes up muscle tissue
- Transport:
  - ☐ Carries oxygen in an organism (hemoglobin).


# 03

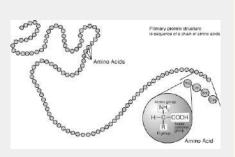

#### **Functions Cont'**

- Immunity:
  - ☐ Helps fight off foreign invaders
  - antibodies
- **Enzymes**: (more below)
  - ☐ Speed up chemical reactions
  - amylase and pepsin
- Energy source
  - ☐ 1 gram = 4 kcal of energy

# Proteins - ContinuedAcid / Polypeptide

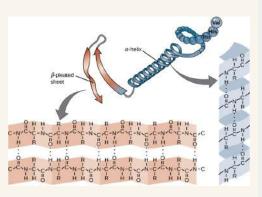









### **Protein Structures**


# Primary Structure

The Primary
 structure is the
 specific sequence of
 amino acids in a
 protein. Called a
 polypeptide.

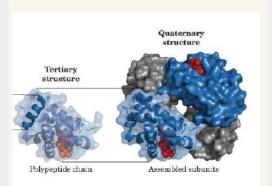


### Secondary Structure

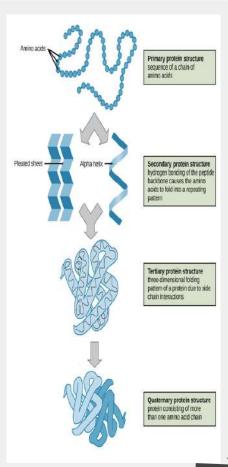
Secondary protein
 structures occur
 when protein
 chains coil(helix)
 or fold(pleated)



### Tertiary

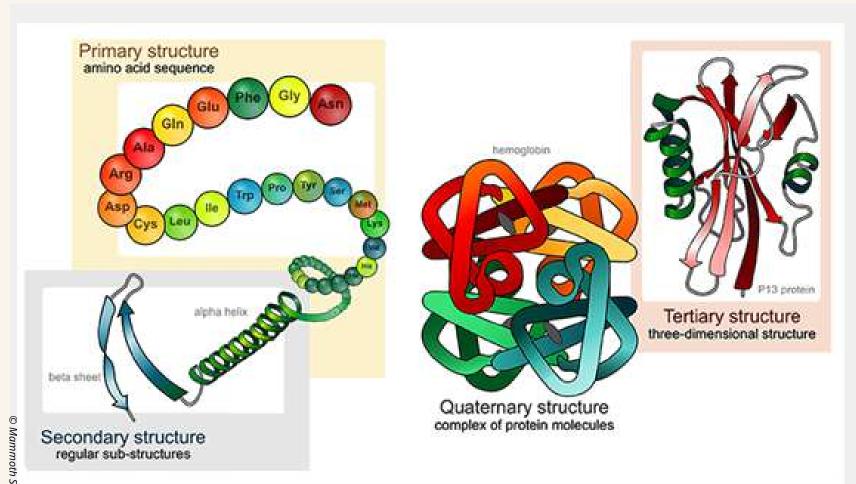

- Structure
   When protein chains
   called polypeptides join
   together, the Tertiary
   structure forms because
   R groups interact with
   each other.
- Secondary structures
   bent and folded into a
   more complex 3-D
   arrangement of linked
   polypeptides
- Bonds: H-bonds, ionic,
   disulfide bridges (S-S)

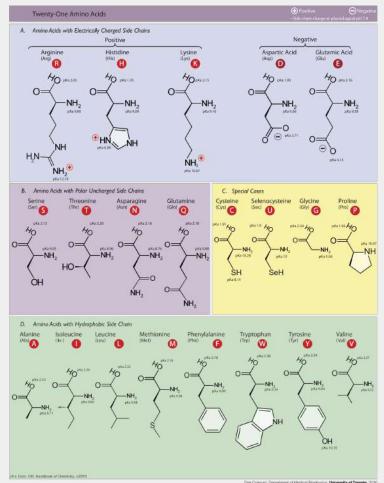
# **Quaternary Structure**


Quaternary

Structure:

Composed of 2 or more "subunits".





### **Summary**

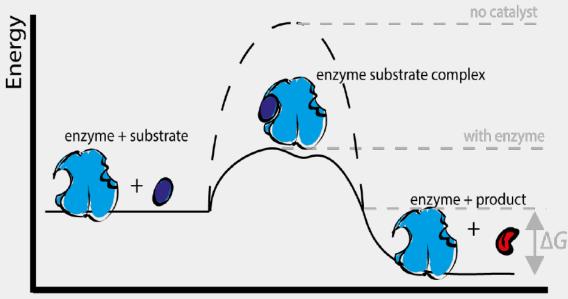















# **Enzymatic Activity**

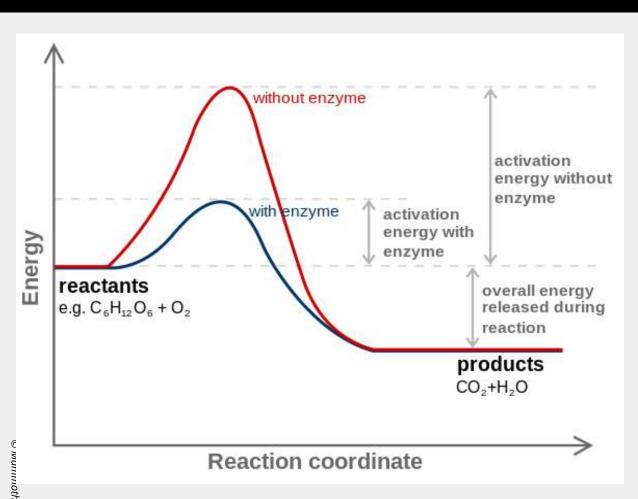
- Many proteins act as biological catalysts or enzymes.
  - 1. Thousands of different enzymes exist in the body.
  - 2. Enzymes control the rate of chemical reactions by weakening bonds, thus lowering the amount of activation energy needed for the reaction.
  - 3. This is accomplished by binding to the reactants.
  - 4. They will then twist or bend the material, lowering the energy needed to split it.
- The enzyme contains an opening called its activation (active) site.
  - 5. This site is specific for the object it will hold, called the **substrate**.
  - 6. There are just as many enzymes as there are substrates.
  - 7. The enzyme system is the enzyme and substrate combined.
- Most are proteins.
- They decrease the activation energy of a reaction.
- They Speed up the reaction...
- They are specific to the substrate.

☐ They allow the substrate to fit into the active site like a ball in to a glove, holding it tight. (Lock and Key Model) / They can be reused — NEVER DESTROYED.

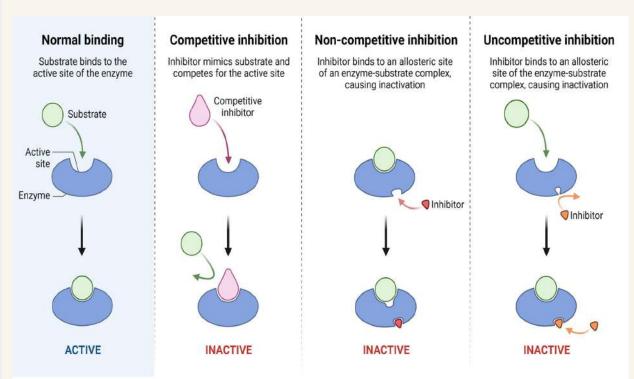


Carsten Müssig eLiS UP

Reaction progress






# **Enzymatic Activity**





#### **Enzyme Action & Inhibition**









### **Nucleic Acids**



#### **Characteristics**

- Nucleic acids are composed of long chains of **nucleotides** (monomer) linked by dehydration synthesis.
- Composed of the Elements: C, H, O, N & P
- Nucleotides include:
  - ☐ A phosphate group
  - ☐ A pentose sugar (5-carbon)
  - ☐ A nitrogenous bases:
  - ☐ Adenine (A)
  - ☐ Thymine (T) **DNA only**
  - ☐ Uracil (U) *RNA only*
  - ☐ Cytosine (C)
  - ☐ Guanine (G)

# **02**

### **Functions**

Functions

**Nucleotide** 

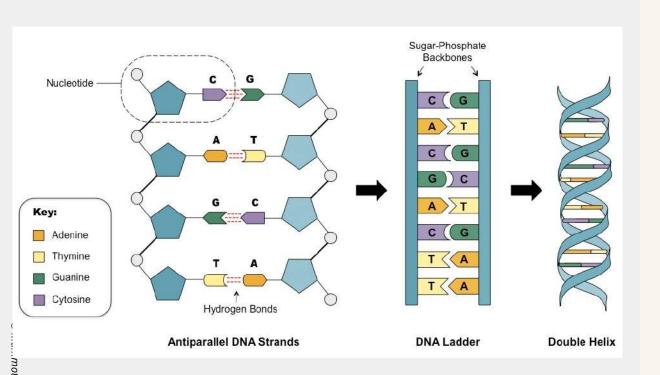
- 1. Transmits hereditary / genetic information
- 2. Leads to the formation of

### proteins **Phosphate Tail** Nitrogenous Bases Molecular Bases = **Genetic Code**

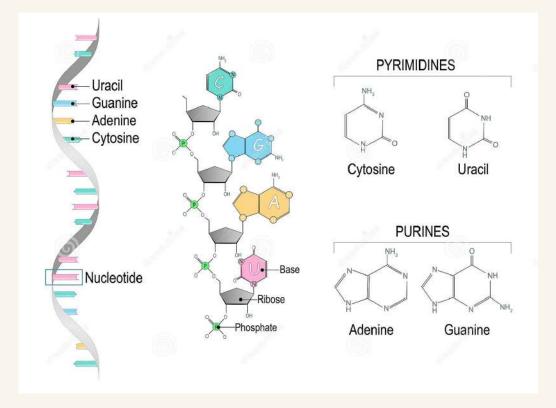
Pentose Sugar

# 03

### 2 Polymers


- Two types:
  - 1. Deoxyribonucleic acid (DNAdouble helix)
  - 2. Ribonucleic acid (RNA-single strand)




# **Nucleic Acid Comparison**



#### Deoxyribonucleic Acid



#### Ribonucleic Acid









# Thank you!

Do you have any questions? instructor@email.com xxx-xxx-xxxx

