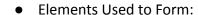
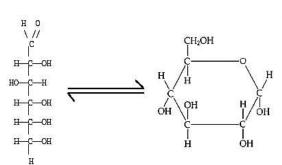


INSTRUCTOR: Mr. Simmons matthewsimmons@hebisd.edu

Vocabulary / Key Terms/ Concepts	Unit 2: Macromolecules Notes
 monomers polymers carbohydrates monosaccharide polysaccharides lipids 	 Expectations Compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids. Analyze and evaluate the evidence regarding formation of simple organic molecules and their organization into long complex molecules having information such as the DNA molecule for self-replicating life. Investigate and explain cellular processes including homeostasis, energy conversions, transport of molecules, and synthesis of new molecules. Identify and investigate the role of enzymes
 nucleotides nucleic acids proteins amino acids enzymes 	Macromolecules Characteristics - Large


1 Mammoth Science Publishing © Mammoth Science

• activation energy	• Also called
• catalyst	Made up of smaller "building blocks" called
• substrates	Biological Macromolecules are:
• Macromolecules	1
• Substrate	2
• Active site	3
• inhibition	4
	Cells connect monomers to make macromolecules by a process called condensation or (removing a molecule of water). Cells break down macromolecules into monomers by a process called (a) Dehydration synthesis Monomers are joined by removal of OH from one monomer and removal of H from the other at the site of bond formation. (b) Hydrolysis Monomers are released by the addition of a water molecule, adding OH to one monomer and H to the other. (b) Hydrolysis Monomers are released by the addition of a water molecule, adding OH to one monomer and H to the other. (c) Hydrolysis Monomers are released by the addition of a water molecule, adding OH to one monomer and H to the other.


Carbohydrates

from small sugar molecules to large strands of sugar molecules bonded together. A biochemical test to indicate the presence of sugar

-_____ *solution* (indicator) – turns green, yellow, orange, or red when heated.

- 1. _____
- 2. _____
- 3. _____
- Examples:
 - 1. _____
 - Called Simple Sugars (monomer).
 - o Include: Glucose, Fructose & Galactose.

CH,OH

D-(+)-Glucose

CH,OH

Ring Form of Glucose

D-(+)-Galactose

снон

o They have the same chemical formula, $C_6H_{12}O_6$, but have different structures.

Linear Form of Glucose

o These three sugars are structural isomers:

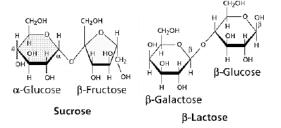
• ______ is found in sports drinks.

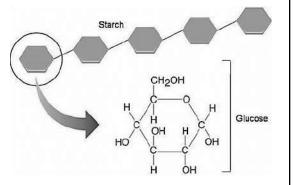
• ______is called "milk sugar"

• is found in fruits.

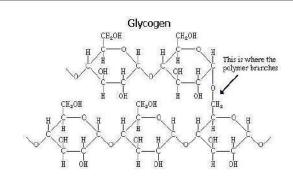
o If the compound name ends in – ose means it is a sugar.

o In aqueous (watery) solutions, Monosaccharides form_

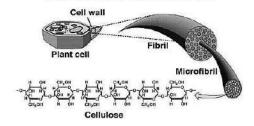

 They are the main fuel that cells use for work.

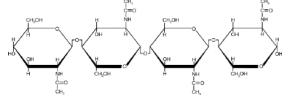

2. Disaccharide

- o A ______is made of two sugar molecules joined together.
- o They are joined in the dehydration process.
- o There is a glycosidic bond between the two sugars.


3. Polysaccharide

- o _____carbohydrates
- o Composed of many sugar monomers linked together.
- o ______ of monosaccharide chains.





- o Three types of polysaccharides are: starch, glycogen, and cellulose.
 - iodine (indicator) turns dark blue or black
 - Starch is an example of a polysaccharide in plants.
 - Plant cells store starch for energy.
 - Potatoes and grains are major sources of starch in the human diet.
 - - Animals store excess sugar in the form of glycogen.
 - Glycogen is similar in structure to starch because both are made of glucose monomers.
 - _____
 - Cellulose is the most abundant organic compound on Earth.
 - It is the structural component of plants.
 - It forms cable-like fibrils in the tough walls that enclose plants.
 - Many animals cannot digest cellulose.
 - It is also known as dietary fiber.

Arrangement of Fibrils, Microfibrils, and Cellulose in Cell Walls

Chitin is made of linked together in a chain. Partly derived from non-sugars (nitrogen). _____ of insects, lobsters, and shrimp. Composes _ The cell walls of ______ are also made from chitin. Chitin fibers are also used for _______. Lipids **Characteristics** Lipids are -"water fearing". Do not mix with water. Includes fats, waxes, Triacylalycero Diacylalyceral steroids, oils & Stores the most energy. Sorturated Unsaturated Composed of: · vegetable ail margarine Six functions of lipids: · palm oil 1. Long term

2	Protection against	loss (insulation)
3.	Protection against	loss
4.	Protection against physical	
5.	Chemical messengers ()
6.	Major component of membranes (_)
Fatty Acid	s –	
	•: a long	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	chain of Hydrogen and Carbon	6666666666666
	make up lipids. The exception	• • • • • • • • • • • • • •
	to the monomer/polymer rule	000000000000000000000000000000000000000
	is lipids. Lipid base units are	• • • • • • • • • • • • • • •
	not considered monomers.	
	One type of lipid glycerol	T
	molecules in a 3:1 ratio. The	Glycerol Carboxyl groups
	bonding of three fatty acids to on	e glycerol molecule creates a triglyceride
Types	of Fatty Acids	
1.	: if each	h Carbon is bonded by single bonds to other Carbons
	inside the fatty acid, the fatty acid is	
2.		Acid: If a double bond is present, then it is said to
	be mono-saturated or unsaturated.	

© Mammoth Science

More than on	Acid - le double bond	O H H H II I I I H-O-C-C-C-C-H I I I H H H
Most <u>anin</u>	nal fats have a high	Butyric Acid-Saturated Fatty Acid
exist as so	n of saturated fatty acids & lids at room temperature argarine, shortening).	O H H H H H H H H H H H H H H H H H H H
·) can turn a variety of colors sence of lipids.	Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н
•	•	ed fatty acids & exist as liquids at room
temperatu		Extracellular
membranes a phospholipids Phospholi attract wa (pids have a head that is polar &	Intracellular Hydrophobic tail Hydrophilic head

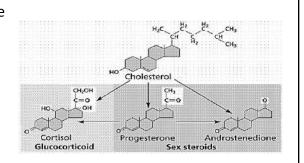
© Mammoth Science

- <u>is the "base</u> steroid" from which your body produces other steroids.

Proteins

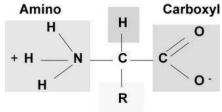
- Characteristics
 - 1. Composed of

•


- 2. Monomer
 - - 20 different (1 mod)
 - Most structural variation
- Functions
 - 1. Essential to Life –

______(indicator) turns
purple/lavender with protein, pink with amino

- **2.** Build _____
- 3.
 - Makes up _____tissue
- 4. _____:
 - Carries oxygen in an organism (hemoglobin).


© Mammoth Science

7. _____

Amino Acid Structure

Hydrogen

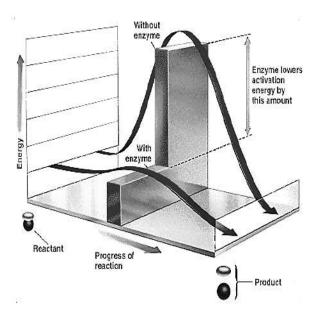
R-group (variant)

acid.

Antibody-Antigen Binding

 Helps fight off foreign in antibodies Speed up chemical read amylase and pepsin 	: (more below) ctions	Primary structure amino acid sequence Ala Arg Arg Cys Leu Ile Trp Pro Tyr Ger Met Lyr
 9	bonding links Bond	sipha helix bela sheet Secondary structure regular sub-structures
when protein chains coil(he	acids in a protein. Called a reprotein structures occur elix) or fold(pleated) d polypeptides join together, structure forms	P13 protein Tertiary structure three-dimensional structure complex of protein molecules

© Mammoth Science


-	Secondary structures bent and folded into a more complex 3-D arrangement of linked
	polypeptides

- Bonds: H-bonds, ionic, disulfide bridges (S-S)

Structure: Composed of 2 or more "subunits".

_Activity

- Many proteins act as biological catalysts or enzymes.
 - **1.** Thousands of different enzymes exist in the body.
 - 2. Enzymes control the rate of chemical reactions by weakening bonds, thus ______ the amount of ______ energy needed for the reaction.

- **3.** This is accomplished by binding to the reactants.
- **4.** They will then twist or bend the material, lowering the energy needed to split it.
- The enzyme contains an opening called its ______(active) site.
 - 1. This site is specific for the object it will hold, called the ______.
 - **2.** There are just as many enzymes as there are substrates.

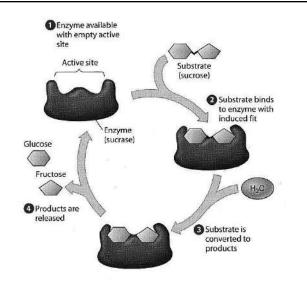
3.	The enzyme system is the enzyme and
	substrate combined.

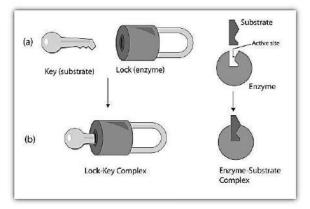
Most are _______.

• They ______the activation energy of a reaction.

• They _____the reaction...

• They are ______to the substrate.


They allow the substrate to fit into the active
 site like a ball into a glove, holding it tight.


(Model)

They can be reused –

____·

– Some Common Enzymes:

Active Site	Enzyme	Effect on Food
mouth	salivary amylase	breaks down starches into disaccharides

stomach	pepsin	breaks down proteins into peptides
small intestine (from pancreas)	amylase	continues starch breakdown
small intestine (from pancreas)	trypsin	continues breakdown of protein
small intestine (from pancreas)	lipase	breaks down fat
small intestine	maltase, sucrase, lactase	breaks down remaining disaccharide into monosaccharic
small intestine	peptidase	breaks down di-peptides into amino acids
		Cytosine C

	 Nucleotides include: A
Notes Summary	