

Unit 2: Macromolecules Enzyme/Catalase H₂O₂ Reaction

INSTRUCTOR:

no_reply@example.com

CATALASE LAB INVESTIGATION PURPOSE

To examine the functioning of the tissue enzyme catalase extracted from potato juice.

INTRODUCTION

Hydrogen Peroxide (H₂O₂) is a poisonous waste product of metabolism (oxidation) in many cells. Many tissues contain an enzyme called catalase which disposes of hydrogen

peroxide by accelerating (catalyzing) this reaction:

$$2H_2O_2 \rightarrow 2 H_2O + O_2$$

Because of its effect on bacteria, hydrogen peroxide is a strong antiseptic. Watch your clothing though; H₂O₂ is also a bleaching agent!

REMEMBER:

Soak discs in catalase and place in **varied** beakers of H_2O_2 .

MATERIALS

- potato juice extract (contains catalase) / beef liver
- filter paper discs
- forceps/tweezers
- hydrogen peroxide (3% H₂O₂)
- tap water
- stopwatch
- beakers (50 mL)

METHOD

- 1. Soak a filter paper disc in the potato extract for a few seconds.
- 2. Place the saturated disc in a beaker containing H₂O₂.
- 3. Time how long it takes the disc to rise to the top of the H_2O_2 .

PROCEDURE FOR VARYING <u>SUBSTRATE</u> CONCENTRATIONS

- 1. Set five beakers up according to the table. You may use the lab sheet provided as well.
- 2. Perform five trials for each **substrate** (H_2O_2) concentration.
- 3. Record data.

BEAKER	1	2	3	4	5
mL H ₂ O ₂	0	10	20	30	40
mL H ₂ O	40	30	20	10	0
% H ₂ O ₂	0.00	0.75	1.50	2.25	3.00

BEAKER	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Average	Rate (hints on next page)
1 – 0.00% H ₂ O ₂							
2 – 0.75% H ₂ O ₂							
3 – 1.50% H ₂ O ₂							
4 – 2.25% H ₂ O ₂							
5 – 3.00% H ₂ O ₂							

DETERMINING RATE

- Rate is determined by dividing 1 by the time. Please show all the work.
- Please graph your data using the determined rate.

REMEMBER:

Soak discs in catalase and place in **single** beaker of H₂O₃.

PROCEDURE FOR VARYING *ENZYME* CONCENTRATIONS (EXTENSION)

- 1. Set five beakers up according to the table. You may use the lab sheet provided as well.
- **2.** Perform three trials for each **enzyme** (catalase/potato extract) concentration. Remember to soak the discs in the extract, not the H_2O_2 .
- 3. Record data.

4. After determining rate, please graph the data.

BEAKER	1	2	3	4	5
mL Potato Extract	0	2.5	5	7.5	10
mL H ₂ O	10	7.5	5	2.5	0
% Potato Extract	0	25	50	75	100

BEAKER	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Average	Rate
0% extract							
25% extract							
50% extract							
75% extract							
100% extract							

DETERMINING RATE

- Rate is determined by dividing 1 by the time. Please show all the work.
- Please graph your data using the determined rate.

QUESTIONS

1.	What was the purpose of taking 5 trials?							

3. Did changing the concentration of the potato extract containing the catalase (enzyme) influence the rate of the reaction? Explain. DNCLUSION —	2.	Did changing the concentration of the H_2O_2 (substrate) influence the rate of the reaction? Explain.							
influence the rate of the reaction? Explain.									
influence the rate of the reaction? Explain.									
influence the rate of the reaction? Explain.									
influence the rate of the reaction? Explain.									
DNCLUSION —	3.								
DNCLUSION —									
DNCLUSION —									
DNCLUSION —									
	ONC	CLUSION –							

ADDITIONAL INQUIRY QUESTIONS

What type of organic molecule is catalase, and all enzymes, composed?
f catalase is the enzyme, hydrogen peroxide is the What organelles are necessary for the synthesis of catalase? Explain
what organieles are necessary for the synthesis of catalase? Explain
What determines the structure of the catalase molecule?
Does catalase operate the same at all pHs? Explain with data to support your answer.
What is the active site of an enzyme?

Why is it impossible for a paper clip to contain the enzyme catalase?
Explain the "Lock and Key Theory" of enzyme action. Explain induced Fit Theory.
Why can it be said that "without proper enzyme functioning, an organism will perish"?

10. EXPLAIN wha as an exampl	_	eratures have up	oon enzyme acti	ivity. Use an an	imal's metabolism
·					
11. EXPLAIN wha	t effect excessively	y high temperat	ures have upon	enzyme activit	y.

Appendices

Reaction Rate

Substrate Concentration

Enzyme Concentration

Varying <u>H2O2</u> (Substrate) Concentrations

BEAKER	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Average	Rate
1 – 0.00% H ₂ O ₂							
2 – 0.75% H ₂ O ₂							
3 – 1.50% H ₂ O ₂							
4 – 2.25% H ₂ O ₂							
5 – 3.00% H ₂ O ₂							

Discs are saturated with uniform (same amount each time) catalase and placed in beakers with varying H₂O₂ concentrations.

Varying <u>Catalase</u> (Enzyme) Concentration

Discs are saturated with varying catalase and placed in beakers with uniform (40ml - 100%) H_2O_2 .

Enzyme Concentrations...you are soaking your disks in these concentrations and placing them EACH TIME in 100% H₂O₂ - 40 mL

BEAKER	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Average	Rate
0% extract							
25% extract							
50% extract							
75% extract							
100% extract							