

Unit 2 -Macromolecules

- Compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids.
- Analyze and evaluate the evidence regarding formation of simple organic molecules and their organization into long complex molecules having information such as the DNA molecule for self-replicating life.
- Investigate and explain cellular processes including homeostasis, energy conversions, transport of molecules, and synthesis of new molecules.
- Identify and investigate the role of enzymes

MAMMOTH SCIENCE	——————————————————————————————————————	
	Macromolecule Characteristics	
	Dehydration Synthesis & Hydrolysis	
	Carbohydrates	
	Lipids	
	Proteins/ Enzymes	
	Nucleic Acids	
© Mammoth S		
cience		

Macromolecules / Biomolecules

Macromolecules

Characteristics -

- Large organic molecules.
- Also called <u>polymers</u>.
- Made up of smaller "building blocks" called monomers.
- Biological Macromolecules are:
 - 1. Carbohydrates
 - 2. Lipids
 - 3. Proteins
 - 4. Nucleic acids (DNA and RNA)

Dehydration Synthesis vs. Hydrolysis

- Cells connect monomers to make macromolecules by a process called condensation or <u>dehydration synthesis</u> (removing a molecule of water).
- Cells break down macromolecules into monomers by a process called <u>hydrolysis</u> (adding a molecule of water)

© Mammoth Science

Carbohydrates

01

Characteristics

- Carbohydrates can range in size from small sugar molecules to large strands of sugar molecules bonded together. A biochemical test to indicate the presence of sugar –
 Benedict's solution (indicator) – turns green, yellow, orange, or red when heated.
- Elements Used to Form:
 - 1. Carbon
 - 2. Hydrogen
 - 3. Oxygen

02

Monomer - Monosaccharide

- 1. Monosaccharide
 - **Called Simple Sugars (monomer)**.
 - □ Include: Glucose, Fructose & Galactose.
 - They have the same chemical formula,
 - $C_6H_{12}O_6$, but have different structures.
 - These three sugars are structural isomers:
 - *Glucose* is found in sports drinks.
 - Galactose is called "milk sugar"
 - Fructose is found in fruits.
 - If the compound name ends in ose means it is a sugar.
 - In aqueous (watery) solutions, Monosaccharides *form ring structures*.
 - They are the main fuel that cells use for work.

03

Disaccharide

- 2. Disaccharide
 - A <u>disaccharide</u> is made of two sugar molecules joined together.
 - They are joined in the dehydration process.
 - There is a glycosidic bond between the two sugars.

Carbohydrates Continued

3. Polysaccharide

- Complex carbohydrates
- Composed of many sugar monomers linked together.
- **Polymers** of monosaccharide chains.
- Three types of polysaccharides are: starch, glycogen, and cellulose.
 - Starch in *iodine* (indicator) turns dark blue or black
 - Starch is an example of a polysaccharide in plants.
 - Plant cells store starch for energy.
 - Potatoes and grains are major sources of starch in the human diet.

- Glycogen
 - Animals store excess sugar in the form of glycogen.
 - Glycogen is similar in structure to starch because both are made of glucose monomers.
- Cellulose
 - Cellulose is the most abundant organic compound on Earth.
 - It is the structural component of plants.
 - It forms cable-like fibrils in the tough walls that enclose plants.
 - Many animals cannot digest cellulose.
 - It is also known as dietary fiber.

• Chitin

- Chitin is made of glucose subunits linked together in a chain.
- Partly derived from non-sugars (nitrogen).
- Composes exoskeletons of insects, lobsters, and shrimp.
- The cell walls of fungi are also made from chitin.
- Chitin fibers are also used for dissolving sutures.

Carbohydrates

Lipids

01

Characteristics

- Lipids are *hydrophobic* –"water fearing".
- Do not mix with water.
- Includes fats, waxes, steroids, oils & triglycerides.
- Stores the most energy.
- Composed of: C, H, & O
- **Sudan** (indicator) can turn a variety of colors in the presence of lipids.
- Most plant oils tend to be low in saturated fatty acids & exist as liquids at room temperature (oils).

Functions

- Long term energy storage
- Protection against heat loss (insulation)
- Protection against water loss
- Protection against physical shock
- Chemical messengers (hormones)
- Major component of membranes (*phospholipids*)

03

Structure - Fatty acids

 Fatty Acids: a long chain of Hydrogen and Carbon make up lipids. The exception to the monomer/polymer rule is lipids.
 Lipid base units are not considered monomers. One type of lipid or fat is made up of fatty acids and glycerol molecules in a 3:1 ratio. The bonding of three fatty acids to one glycerol molecule creates a triglyceride

Types of Lipids

01

Saturated

 Saturated Fatty Acid: if each Carbon is bonded by single bonds to other Carbons inside the fatty acid, the fatty acid is said to be saturated.

02

Unsaturated

2. Mono or Unsaturated Fatty Acid: If a double bond is present, then it is said to be mono-saturated or unsaturated.

03

Polysaturated

- 3. Polyunsaturated Fatty Acid More than one double bond
 - Most animal fats have a high proportion of saturated fatty acids & exist as solids at room temperature (butter, margarine, shortening).

Lipids Continued

- Phospholipids Cell membranes are made of lipids called phospholipids. Controls what enters and leaves the cell
 - Phospholipids have a head that is polar & attract water (hydrophilic).
 - Phospholipids also have 2 tails that are nonpolar and do not attract water (hydrophobic)
 - Steroids
 - The carbon skeleton of steroids is bent to form 4 fused rings.
 - Cholesterol is the "base steroid" from which your body produces other steroids.

Phospholipids

Proteins

01

Characteristics

- Composed of
 - **C**, H, O, N, sometimes S
- Monomer
 - amino acids
 - 20 different (1 mod)
 - Most structural variation
- Polymer: Polypeptide
 - Covalent bonding links
 - Peptide Bond

Functions

- Essential to Life *Biuret* (indicator) turns purple/lavender with protein, pink with amino acid.
- Build structure
- Movement:
- Makes up muscle tissue
- Transport:
 - Carries oxygen in an organism (hemoglobin).

03

Functions Cont'

- Immunity:
 - □ Helps fight off foreign invaders
 - antibodies
- Enzymes: (more below)
 - □ Speed up chemical reactions
 - amylase and pepsin
- Energy source
 - □ 1 gram = 4 kcal of energy

Amino Acid / Polypeptide

Protein Structures

Primary Structure

The Primary
 structure is the
 specific sequence of
 amino acids in a
 protein. Called a
 polypeptide.

Secondary Structure

Secondary protein
 structures occur
 when protein
 chains coil(helix)
 or fold(pleated)

Tertiary Structure

- When protein chains
 called polypeptides join
 together, the Tertiary
 structure forms because
 R groups interact with
 each other.
- Secondary structures
 bent and folded into a
 more complex 3-D
 - arrangement of linked
 - polypeptides
- Bonds: H-bonds, ionic,
 disulfide bridges (S-S)

Quaternary Structure

- Quaternary
 - Structure:

Composed of 2 or

more "subunits".

Summary

Protein Structures Summary

Enzymatic Activity

- Many proteins act as biological catalysts or enzymes.
 - 1. Thousands of different enzymes exist in the body.
 - 2. Enzymes control the rate of chemical reactions by weakening bonds, thus lowering the amount of activation energy needed for the reaction.
 - 3. This is accomplished by binding to the reactants.
 - 4. They will then twist or bend the material, lowering the energy needed to split it.
- The enzyme contains an opening called its activation (active) site.
 - 1. This site is specific for the object it will hold, called the **substrate**.
 - 2. There are just as many enzymes as there are substrates.
 - **3.** The enzyme system is the enzyme and substrate combined.
- Most are proteins.

noth Scienc

- They decrease the activation energy of a reaction.
- They Speed up the reaction...
- They are specific to the substrate.

Enzymatic Activity

Nucleic Acids

01

Characteristics

- Nucleic acids are composed of long chains of nucleotides (monomer) linked by dehydration synthesis.
- Composed of the Elements: C, H, O, N & P
- Nucleotides include:
 - A phosphate group
 - □ A pentose sugar (5-carbon)
 - □ A nitrogenous bases:
 - □ Adenine (A)
 - Thymine (T) **DNA only**
 - □ Uracil (U) RNA only
 - Cytosine (C)
 - Guanine (G)

- Functions
 - **1.** Transmits hereditary / genetic information
 - Leads to the formation of proteins

03

2 Polymers

- Two types:
 - 1. Deoxyribonucleic acid (DNA-double helix)
 - 2. Ribonucleic acid (RNA-single strand)

Nucleic Acid Comparison

Deoxyribonucleic Acid

Ribonucleic Acid

Thank you!

Do you have any questions? <u>matthewsimmons@hebisd.edu</u> 817-399-3360 x-7565

