CCM2 Unit 2 Lesson 2: TRANSFORMATIONS

NOTES

TRANSFORMATIONS:

TRANSFORMATION	RULE
1) Translation with components h, K	
h = horizontal	
k= vertical	
2) Reflection Over y-axis	
3) Reflection Over x-axis	
4) Reflection Over y = x	
5) Reflection Over y = -x	
6) 90° Counter Clockwise Rotation	
7) 180° Rotation	
8) 270° Counter Clockwise Rotation	
9) 90° Clockwise Rotation	
10) Dilation	

Transformations:

A transformation is a change in the position of a figure in some way.

The original figure is called the ______.

The resulting figure is called the ______.

A transformation changes the ______ to the ______.

Arrow notation \rightarrow is used to describe a transformation, and a (') is used to label the new image point

Reflections

Graph the image of the figure using the transformation given.

1) reflection across the x-axis

2) reflection across y = 3

4) reflection across the x-axis

Find the coordinates of the vertices of each figure after the given transformation.

7) reflection across the x-axis K(1, −1), N(4, 0), Q(4, −4)

9) reflection across x = 3F(2, 2), W(2, 5), K(3, 2)

Write a rule to describe each transformation.

Dilations

Directions: Answer the following questions to the best of your ability. For the y-axis, use the same scaling as the x-axis

1. In Math, the word dilate means to ______ or _____ a figure.

2. If a scale factor is less than 1, then your figure gets _____.

3. If a scale factor is greater than 1, then your figure gets _____

Graph the dilated image of triangle JKL using a scale factor of 2 and (0,0) as the center of dilation.

l:	J':
K:	К':
L:	Ľ:

Graph the dilated image of quadrilateral MNOP using a scale factor of 3 and the origin as the center of dilation.

M:	M':
N:	N':
0:	0':
P:	P':

Rotations

Graph the image of the figure using the transformation given.

1) rotation 180° about the origin

Find the coordinates of the vertices of each figure after the given transformation.

- 7) rotation 180° about the origin Z(-1, -5), K(-1, 0), C(1, 1), N(3, -2)
- rotation 180° about the origin L(1, 3), Z(5, 5), F(4, 2)

10) rotation 180° about the origin

V(-5, -3), A(-3, 1), G(0, -3)

9) rotation 90° clockwise about the origin *S*(1, −4), *W*(1, 0), *J*(3, −4)

Write a rule to describe each transformation.

Transformations

Graph the image of the figure using the transformation given.

1) translation: 1 unit left

3) translation: 3 units right

4) translation: 1 unit right and 2 units down

Write a rule to describe each transformation.

