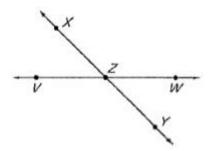
UNIT 2: TRANSFORMATIONS & CONGRUENCE

LESSON 1: BASIC TERMS OF GEOMETRY

VOCABULARY	DEFINITION	NAME/ NOTATION	EXAMPLE
POINT	A location in space No - No width -		A• B
LINE	An infinite set of points that extend endlessly in two directions Infinite length - No - No thickness		C D k
PLANE	A set of at least 3 non-collinear points that creates a flat surface and extends infinitely in all directions. - Infinite - Infinite - No thickness		
SEGMENT	A set of all points (line) between two endpoints Measurable length		C B
RAY	A set of points extending infinitely in only one direction. One endpoint		● B C
CONGRUENT	Two figures or objects are congruent if they have the same shape, size, and measure		Congruent Sides Congruent Angles

SIMILAR	In Geometry, two shapes are Similar if the only difference is size	A 75° B 65° Y
ANGLE	Formed by two lines or rays extending from the same point. Measured in degrees	B A
VERTICAL ANGLES	Two angles such that the sides of one angle are opposite rays to the side of the other angles.	
ADJACENT ANGLES	Angles that share a	1 2
DISTANCE	The measure of length between two points.	A 12 B
MIDPOINT	A point that divides the segment into two congruent segments.	C A B
ANGLE MEASURE	The amount of turn between the two arms and is usually measured in degrees or radians, measured with a protractor	C 40° A 3
COMPLEMENTARY ANGLES	Two angles whose measures have the sum of	1 2 >
SUPPLEMENTARY ANGLES	Two angles whose measures have the sum of	1 2 2 >

TRIANGLE	A plane figure with three straight sides and three angles, total sum of angles is 180°	
POLYGON	A plane figure with at least three straight sides and angles, and typically five or more	
ROTATION	Turns a figure through an angle about a fixed point	Turn!
REFLECTION	A 'flip' of a shape over the line of reflection	Flip!
TRANSLATION	"slides" an object a fixed distance in a given direction. The original object and its translation have the same shape and size, and they face in the same direction	Slide!
DIALATION	A transformation that produces an image that is the same shape as the original, but is a different size	A(-2,-2) B(1,-1) C(0,2) C(0,2) X B B A(-4,-4) B(2,-2) C(0,4)

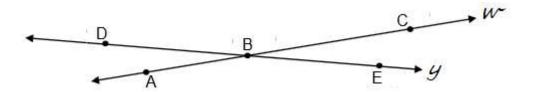

PRACTICE: BASIC TERMS OF GEOMETRY

POINTS

A point has no _____ or _____.

We represent a point with a ______ letter.

1. Name any three points in the diagram below: ______

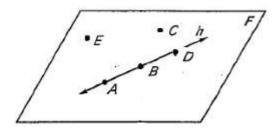


LINES

We can name a line with one letter or we using points on the line with a _____ symbol on top.

A line has no ______ or no ______.

- 2. Can we draw a line that is 12 cm long?
- 3. Using the diagram below to name 2 lines using both methods for each line:


PLANES

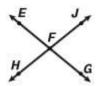
We represent planes with a 4 sided figure.

A plane extends infinitely in ______ directions and has no _____.

We name a plane with a _____ or ___ upper case letters.

4. Name the plane bellow 3 different ways: ______

5. Is ABD an appropriate name for this plane? Why or why not?



SEGMENT

A segment has ____ endpoints.

- 6. Can we find the length of a segment? _____
- 10. Use the diagram below to name 3 segments using the proper notation:

RAY

A Ray has only endpoint	and extends infinitely in _	direction.
When naming a ray the letter come first and we use a		
11. Use the diagram below to	name 2 rays:	
u s		
	ANGLES	
Angles are formed when 2	or rays	meet at the
12. We can name an angle in sangle in the diagram below:	several ways; use each me	thod to name the
13. Name the vertex and sides		
5		

DISTANCE

What is the difference in the segment and distance notation? _____

Use the number line to find each measure.

1. BD

2.DG

A B C DE F G

3. AF

4. EF

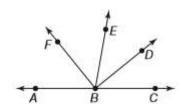
5. BG

6.AG

7. BE

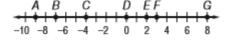
8. DE

CONGRUENT


The symbol for congruence is _____.

When showing two segments are congruent we use _____ marks.

13. Label the diagram below to show $\overline{AB} \cong \overline{CD}$.



14. Label the diagram below to show $\langle ABF \cong \langle CBD \rangle$

MIDPOINT

Use the number line to find the coordinate of the midpoint of each segment.

1. \overline{CE}

 $2.\overline{DG}$

 $3.\overline{AF}$

4. \overline{EG}

 $5.\overline{AB}$

6. \overline{BG}

 $7.\overline{BD}$

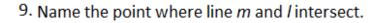
8. \overline{DE}

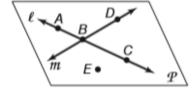
UNIT 2 LESSON 1 PRACTICE:

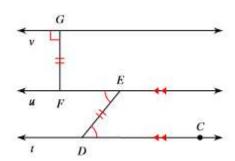
Name each figure using the correct notation.

2. Ť

Write *parallel, intersecting*, or *perpendicular* to describe the relationship between each pair of lines.


5.


6.


- 7. Name the plane in 2 different ways.
- 8. What is another way to name line m.

10. Name 3 angles in the diagram.

Use this diagram to answer questions 11&12.

- 11. Name a pair of congruent angles.
- 12. Name a pair of congruent segments.