Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
5	6	7 Unit 15 Pretest Electromagnetic Waves & Color Notes/ Post Assessment Due	8 Electromagnetic Wave & Color Practice DUE	9 Color Simulation Due	Mirrors Notes/ Post Assessment Due	11
12	Mirrors Practice DUE Who Can See Who Interactive Due	Lens Notes/ Post Assessment Due	15 Lens Practice DUE	16 Refraction Lab	Refraction Lab Report Due	18
19	Crib Sheet Redo Practices to prepare for Unit Test	Unit 15 Test Submit Unit 15 Warm Ups	Waves Semester Test Practice	Waves Semester Test Practice Crib Sheet	Waves (Units 13-15) Semester Test Start Kaleidoscope Project	25

See Unit 15 Due Dates Sheet for more detail regarding additional requirements and due dates.

Physics 1A

Goals:

- 1. I can compare the different electromagnetic waves based on energy, frequency and/or wavelength.
- 2. I can use mathematics and computational thinking to determine the wavelength or frequency and then use apply it to identify the unknown electromagnetic wave
- 3. I can use a simulation to determine the effect different filters have on visible light.
- 4. I can measure the angle of incidence and the angle of refraction to calculate the index of refraction.