Unit 1 Slides

Warm Up

- Compare and contrast the two circuits.
- 2. Do you predict the two light bulbs will be the same brightness compared to the other circuit?

To Review Today...

- Syllabus
- Course Expectations
- Grading

Warm Up

- 1. Draw a circuit that has two lights and a battery
- 2. Draw a circuit that has two lights and a switch. The switch turns off the batteries at the same time.
- 3. Draw a circuit with two resistors.

Drawing Circuits

- 1) Always straight lines
- 2) No Labels
- 3) Box-shaped
- 4) Always has a battery
- 5) Replace parts of the circuit with symbols
- 6) Just try it!

Today in Class

- Complete Day 1 circuits and the compare and contract slides
- Show me
- Move on to Day 2
- You will be turning in your Day 2 compare and contrast. You will also get an in class observation for data collection (Investigation).

Notes

- Add compare and contrast to google classroom
- In class observation data collection (investigation)
- Edit the final idea- picture with whiteboard

Warm Up Physics

- 1. What do you expect will be different about the light bulb brightness between the first and second circuit?
- 2. Why do you think that is happening?
- 3. Which one do you think is called parallel and series? Why?

CHARGE YOUR
CHROMEBOOKS FOR NWEA
NOW!

Wednesday Goals

- Complete Compare and Contrast Day 1 on Google Classroom
- Complete Circuit Exploration Day 2 Circuits
- Complete Compare and Contrast Day 2 on Google Classroom
- If you finish both, read about the Circuit Challenge and begin to plan your "town" in your notebook.

Look at your circuits... which ones are series, parallel or both?

Warm Up Physics

What do you think a resistor does? What do these colors mean?

OHM'S LAW ANALOGIES

Resistance to Movement

Voltage or "Reason for electrons to Move"

Amperage: The number of mice per unit of time that make it to the cheese

What's a resistor?

Slow down the flow of electrons.

Strength?

Thursday Goals

- Complete Compare and Contrast Day 1 on Google Classroom (past due)
- Complete Circuit Exploration Day 2 Circuits
- Complete Compare and Contrast Day 2 on Google Classroom (due today)
- Circuit Challenge! Due Friday End of Class
- If you finish all of that, work on the resistor color codes on Google Classorom!

Warm Up Physics

- 1. For the resistor on the right, what is the resistance (using the chart)?
- 2. What are the colors if resistor is 700 Ω and 5%?

Color	Band 1	Band 2	Band 3	Band 4
Black	0	0	x 1Ω	·
Brown	1	1	x 10Ω	
Red	2	2	x 100Ω	
Orange			x 1ΚΩ	
Yellow				
Green			x 100ΚΩ	
Blue	6	6	x 1MΩ	
Violet		7	x 10MΩ	
Grey		8		
White	9	9	-	ä
Gold	÷		(1.)	±5%
Silver	-	(±10%

Friday Goals

- Go onto Google Classroom and make sure you have turned in boy Day 1 and Day 2 Compare and Contract Assignments
- Circuit Challenge! Due Friday End of Class
- If you finish all of that, work on the resistor color codes on Google Classroom!

Color	Band 1	Band 2	Band 3	Band 4
Black	0	0	x 1Ω	-
Brown	1	1	x 10Ω	
Red	2	2	x 100Ω	
Orange			x 1KΩ	
Green			x 100KΩ	
Blue	6	6	x 1MΩ	
Violet		7	x 10MΩ	
Grey		8		
White	9	9	-	Ä
Gold			*	±5%
Silver	-	(. 	-	±10%
		. ↓ ↓	1	
		ш		

Color	Band 1	Band 2	Band 3	Band 4
Black	0	0	x 1Ω	÷
Brown	1	1	x 10Ω	-
Red	2	2	x 100Ω	
Orange			x 1KΩ	
Green			x 100KΩ	
Blue	6	6	x 1MΩ	-
Violet	7	7	x 10MΩ	
Grey				
White	9	9	-	8
Gold	Ē	1.5	77	±5%
Silver	-		-	±10%
				-

