1) Which one of the following equations is equivalent to 2x + 14 = -5?

A)
$$2x + 10 = -9$$

B)
$$2x + 14 = -10$$

C)
$$x + 7 = -10$$

D)
$$x = 2(-5 - 7)$$

2) Write a first degree equation with one variable that is true for all real numbers.

Answer: _____

3) Write a first degree equation with one variable that has the empty set as its solution set.

Answer: _____

4) Is x = 4 the solution for 4(2x + 1) = 7 + 3(2x - 5)?

Show your work.

Circle one: Yes No

5) The solution to the equation 2 - 7(x - 1) = 3(x - 2) - 5(x - 3) is shown below. Fill in each blank with a reason for each step of the solution.

$$2 - 7x + 7 = 3x - 6 - 5x + 15$$

$$-7x + 2 + 7 = (3x - 5x) + 15 - 6$$

$$-7x + 9 = -2x + 9$$

$$-7x = -2x$$

$$-5x = 0$$

$$x = 0$$

6) Solve for x: $\frac{7}{10}$ x+2=16

Show your work.

Answer: _____

Answer: _____

Question 8 refers to the following:

Solve the given equation for the variable and check the solution:

8) 5(k + 1) - k = 3(k + 2)

Show your work.

Answer: _____

- 9) What inequality is equivalent to 2x 1 > 5?
 - A) x > 2

B) x > 3

- C) x > 6
- D) x < 3

- 10) What inequality is equivalent to $\frac{3x}{2}$ 6 < 9?
 - A) x < 7
- B) x < 10

- C) x < 8
- D) x < 2

Questions 11 and 12 refer to the following:

Solve the given inequality for x, and represent the solution set using set notation, interval notation, and using words:

11) 3x - 9 > 12

Show your work.

Set notation: _____ Interval notation: _____ Words: _____ 12) $3x + 7 \le 6x - 2$ Show your work.

Set notation: _____ Interval notation: _____ Words:

13) Which one of the following graphs represents the solution of the inequality 2x + 3 > 9?

14) Which one of the following graphs represents the solution of the inequality $-3x + 1 \le 10$?

B) 4 1 0 1 2 3 4 5

15) What interval notation represents the data graphed below?

16) What interval notation represents the data graphed below?

A)
$$[-4,1)$$

$$(-4,1)$$

- D) [-4,1]
- 17) Which of the graphs below shows the solution set of $(-\infty, -3] \cup (6, \infty)$?

18) Which of the graphs below shows the solution set of $(-\infty,0) \cup (9,\infty)$?

19)	Write an example of a compound statement that has the set of all real numbers as its solution set. Answer:
Que	estions 20 and 21 refer to the following:
Writ	e a compound inequality that represents the given graph:
20)	0 2 4 6 8 10 12 14 16
	Answer:
21)	-4 -3 -2 -1 0 1 2 3 4 5 6
	Answer:
	ve the given inequality and represent the solution set using set notation: 6 > 3(4 + 5d) > -3 Show your work.
	Answer:
23)	$3x - 1 < 2(x + 4)$ or $7x - 3 \ge 2(x + 1)$ Show your work.
	Answer:

24)	Part	Α
	ı aıı	$\overline{}$

Solve the compound inequality $2x + 3 \ge 11$ and 3(x - 1) > 15. Represent the solution set *both* algebraically and graphically (if possible)

Show your work.

Algebraically:	
----------------	--

Graphically: ◆+++++++++

Part B

Replace the logical connector "and" with an "or" and solve the resulting inequality. Represent the solution set both algebraically and graphically (if possible)

Algebraically:

Part C

Write an explanation as to why the solution sets are not equivalent.

Questions 25 and 26 refer to the following:

Solve the given inequality and represent the solution set using interval notation and set notation. Graph any solution set that is not empty:

25) $-7 \ge 1 - 4x \ge 1$

Show your work.

Set notation: _____

26)	z - 5 > 2 or 4 + z < 2
	Show your work.

Set notation: _____
Interval notation: _____

- 27) What is the value of x if 5a 3x = 2b + 4x?
 - A) $\frac{2b-5a}{7}$
- B) $\frac{5a+2b}{7}$
- C) $\frac{5a+2b}{-7}$
- D) $\frac{5a-2b}{7}$

Questions 28 through 30 refer to the following:

Solve the given formula for the indicated variable:

28)
$$T = fm - gm$$
; m Show your work.

Answer: _____

29)
$$F = \frac{9}{5}\,C + 32;\,C$$

Show your work.

Answer: _____

30)
$$\mathrm{V}=\pi r^2 h$$
; r

Show your work.

Answer:

Question 31 refers to the following:

Write the given equation as a compound statement that indicates restriction on the values of the variable, and solve the equation:

31)
$$\frac{2}{x-1} = \frac{6}{2x+1}$$

Show your work.

Statement: []	
Solution set: _	

- 32) Which real number property is illustrated by the expression 3(2 x) = 6 3x?
 - A) Multiplicative Identity Property B) Distributive Property of Multiplication Over Subtraction
 - C) Multiplicative Inverse Property D) Commutative Property
- 33) Determine the real number property illustrated by the algebraic identity (xy)z = z(xy).
 - A) Associative Property for Multiplication
- B) Commutative Property for Multiplication

C) Closure Property

- D) Distributive Property
- 34) Which equation illustrates the Commutative Property of Addition?

A)
$$5xy + 4z = 4z + 5xy$$

B)
$$x(5y - z) = 5xy$$

B)
$$x(5y - z) = 5xy - C$$
 $5x + (y + 4z) = (5x + y) + 4z$

D)
$$5xy + 4z = 5xy + 4z$$

35) Which equation illustrates the Associative Property of Addition?

A)
$$(a + b) + (c - d) + (e + f) = (c - d) + (e + f) + (a + b)$$
 B) $((a + b)(c - d))(e + f) = (a + b)((c - d))(e + f)$

C)
$$((a + b) + (c - d)) + (e + f) = (a + b) + ((c - d)) + (e + D) (a + b)(c - d) = (a + b)c - (a + b)d$$

f))

- 36) When solving the equation $(5 + x)^2 = 50$, Marianna rewrites the equation to be 2(5 + x) = 50. What property of the Real Number System did Marianna use?
 - A) Associative Property for Multiplication
- B) Commutative Property for Addition
- C) Commutative Property for Multiplication
- D) Associative Property for Addition

Questions 37 and 38 refer to the following:

Determine which number property is illustrated by the given statement:

38)
$$\times \cdot (z \cdot x) = x \cdot (x \cdot z)$$

39) What property of real numbers is illustrated by the statement (a - b)($a^2 + b^2$)(a + b) = (a - b)($a^2 + b^2$)?

- 40) Given that a > b, solve for x in terms of a and b [Show all work.]: $b(x 3) \ge ax + 7b$
- 41) The formula for the area of a trapezoid is $A = \frac{1}{2}h(b_1 + b_2)$.
 - (a) Express b_1 in terms of A, h, and b_2 . [Show all work.]
 - (b) The area of a trapezoid is 60 square feet, its height is 6 ft, and one base is 12 ft. Find the number of feet in the other base. [Show all work.]
- 42) Which value of x is the solution of the equation $\frac{1}{7} + \frac{2x}{3} = \frac{15x-3}{21}$?
 - A) 6

B) $\frac{4}{13}$

C) 0

- D) $\frac{6}{29}$
- 43) What is the solution set of the equation $\frac{x}{2} \frac{1}{3} = \frac{2x-5}{6}$?
 - A) {-11}

B) {-3

C) {11}

D) {3}

Questions 44 through 46 refer to the following:

Solve the given equation for the variable in simplest form:

- 44) $\frac{w-3}{2} \frac{w+5}{3} = -2$
 - A) 13

- B) 7
- C) -7

D) -13

45)
$$\frac{2s+7}{6} - \frac{2s-9}{10} = 3$$

46)
$$\frac{3z-4}{3} - \frac{5z-1}{9} = \frac{2z+4}{6}$$