Unit 1: Equations and Polynomials

Lesson 6: Linear Programming

Warm-Up

Solve each system of inequalities by graphing

$$1. \left\{ \begin{array}{l} x \geq 5 \\ y > -3x + 6 \end{array} \right.$$

$$2. \begin{cases} x+3y<-6\\ 2x-3y\leq 4 \end{cases}$$

LINEAR PROGRAMMING:

VERTEX PRINCIPAL OF LINEAR PROGRAMMING:

Example # 1

Find the values of x and y that maximize and minimize P for the objective function P = 3x + 2y. What is the value of P at each vertex?

Constraints
$$\begin{cases} y \ge \frac{3}{2}x - 3\\ y \le -x + 7\\ x \ge 0, y \ge 0 \end{cases}$$

Example # 2

$$\begin{cases} x + y \le 8 \\ 2x + y \le 10 \\ x \ge 0, y \ge 0 \end{cases}$$

Maximum for

$$N = 100x + 40y$$

PRACTICE 1-6 LINEAR PROGRAMMING

1.
$$\begin{cases} x + y \ge 8 \\ y \ge 5 \\ x \ge 7 \end{cases}$$

Minimum for

$$P = 3x + y$$

$$2. \begin{cases} x+y \ge 6 \\ y \le 5 \\ x \le 8 \end{cases}$$

Maximum for

$$C = x + 3y$$

$$3. \begin{cases} x + 2y \ge 8 \\ x \ge 2 \\ y \ge 0 \end{cases}$$

Maximum for

$$C = 2x + 3y$$

Linear Programming Worksheet Algebra 2

1. The area of a parking lot is 600 square meters. A car requires 6 square meters. A bus requires 30 square meters. The attendant can handle only 60 vehicles. If a car is charged \$2.50 and a bus \$7.50,

how many of each should be accepted to maximize income?

Constraints: $c \ge 0$; $b \ge 0$ $c+b \le 60$

P(c,b) = 2.5c + 7.5b

Profit:

 $6c + 30b \le 600$

Area: Quantity:

Car (c)	Bus (b)	Combined
6	30	600
		60
\$2.50	\$7.50	

Buses 80						_
60	L					_
+	9			-	-	_
40						
(0,20)		(50,1	0)	- 2	-	
4		-	60,0)			_

2. The B & W Leather Company wants to add handmade belts and wallets to its product line. Each belt nets the company \$18 in profit, and each wallet nets \$12. Both belts and wallets require cutting and sewing. Belts require 2 hours of cutting time and 6 hours of sewing time. Wallets require 3 hours of cutting time and 3 hours of sewing time. If the cutting machine is available 12 hours a week and the sewing machine is available 18 hours per week, what ratio of belts and wallets will produce the most profit within the constraints?

Constraints:

 $b \ge 0$; $w \ge 0$

Cutting: $2b + 3w \le 12$ Sewing: $6b + 3w \le 18$ Cutting Sewing

	Belts (b)	Wallets (w)	Combined
g:	2	3	12
7:	6	3	18
5:	\$18	\$12	

Profit:

P(b, w) = 18b + 12w

3. Toys-A-Go makes toys at Plant A and Plant B. Plant A needs to make a minimum of 1000 toy dump trucks and fire engines. Plant B needs to make a minimum of 800 toy dump trucks and fire engines. Plant A can make 10 toy dump trucks and 5 toy fire engines per hour. Plant B can produce 5 toy dump trucks and 15 toy fire engines per hour. It costs \$30 per hour to produce toy dump trucks and \$35 per hour to operate produce toy fire engines. How many hours should be spent on each toy in order to minimize cost? What is the minimum cost?

Constraints:

 $d \ge 0; f \ge 0$

Plant A: $10d + 5f \ge 1000$

Plant B: $5d + 15f \ge 800$

Plant A Plant B C(x, y) = 30d + 35f

Dump hrs (d)	Fire hrs (f)	Combined
10	5	1000
5	15	800
\$30	\$35	2

4. A diet is to include at least 140 milligrams of Vitamin A and at least 145 milligrams of Vitamin B. These requirements can be obtained from two types of food. Type X contains 10 milligrams of Vitamin A and 20 milligrams of Vitamin B per pound. Type Y contains 30 milligrams of Vitamin A and 15 milligrams of Vitamin B per pound. If type X food costs \$12 per pound and type Y food costs \$8 per pound how many pounds of each type of food should be purchased to satisfy the requirements at the minimum cost?

Constraints:

$$x \ge 0$$
; $y \ge 0$

Vit A: $10x + 30y \ge 140$ Vit. B: $20x + 15y \ge 145$

Cost: C(x, y) = 12x + 8y

 Food X
 Food Y
 Combined

 Vit A:
 10
 30
 140

 Vit B:
 20
 15
 145

 \$:
 \$12
 \$8

5. The Cruiser Bicycle Company makes two styles of bicycles: the Traveler, which sells for \$300, and the Tourister, which sells \$600. Each bicycle has the same frame and tires, but the assembly and painting time required for the Traveler is only 1 hour, while it is 3 hours for the Tourister. There are 300 frames and 360 hours of labor available for production. How many bicycles of each model should be produced to maximize revenue?

Traveler = xTourister = y

Frame: Labor: \$:

	Traveler (x)	Tourister	Combined
t	(A)	(y)	300
Г	1	3	360
	\$300	\$600	

Constraints:

 $x \ge 0; y \ge 0$

Frames: $x+y \le 300$ Labor: $x+3y \le 360$

Revenue:

R(x, y) = 300x + 600y

