"CRASH COURSE" ACTIVITY

"Understanding Car Crashes It's Basics Physics"

Video Concept Organizer

TIME	Running Time: 22 minutes
	Directions: To help you remember the key physics concepts discussed while viewing the video, fill in the blanks or circle the correct answer.
	Video Scenes & Key Concepts
	Test Track Laws
2:15	Why did the dummy get left behind? It's called <u>inertia</u> , the property of matter that causes it to <u>resist any change in its motion</u> .
2:50	Isaac Newton's circle one 1st 2nd 3rd Law of Motion states: A body at rest remains at <u>rest</u> unless acted upon by an external <u>force</u> , and a body in <u>motion</u> continues to move at a constant <u>speed</u> in a straight line unless it is acted upon by an external force.
	Crashing Dummies
3:20	Now watch what happens when the car crashes into a barrier. The front end of the car is crushing and absorbing <u>energy</u> which slows down the rest of the car.
4:00	In this case, it is the steering wheel and windshield that applies the <u>force</u> that overcomes the dummy's <u>inertia</u> .
	Crash-Barrier Chalkboard
4:3 5	Newton explained the relationship between crash forces and inertia in his circle one let (2nd) 3rd Law of Motion.
	(Fill in the blanks to explain what each letter in the formula represents.)
	F= <u>force</u>
	$F = \underline{m\Delta v}$ $\Delta v = \underline{change in velocity}$ $t t = \underline{time \ or \ rate}$
	$Ft = \underline{impulse} \longrightarrow Ft = m\Delta v \qquad m\Delta v = \underline{change in momentum}$

"CRASH COURSE" ACTIVITY

"Understanding Car Crashes It's Basics Physics"

Video Concept Organizer

TIME 5:20	Surfers, Cheetahs, and Elephantsoh my! Momentum is <u>inertia</u> in motion. It is the product of an object's <u>mass</u> and its <u>velocity</u> .
5:35	Which has more momentum? An 80,000 pound big rig traveling 2 mph or a 4,000 pound SUV traveling 40 mph? circle one Big Rig SUV same
	Soccer Kicks, Slap Shots, and Egg Toss
6:05	What is it that changes an object's momentum? <u>an impulse</u> . It is the product of <u>force</u> and the <u>time</u> for which it acts.
6:18	If the eggs are of equal mass and are thrown at the same velocity they will have the same momenta
6;45	The wall applies a <u>bigger</u> force over a <u>shorter</u> time, while the sheet applies a <u>smaller</u> force over a <u>longer</u> time.
7:10	With panic braking the driver stops in less time or distance and experiences more <u>force</u> .
	Crashing and Smashing
8:20	The second animated vehicle's front end is less stiff so it crushes two feet instead of one, causing the deceleration to <u>decrease from 30gs to 15 gs</u> .
9:04	Extending the time of impact is the basis for many of the ideas about keeping people safe in crashes. List three applications in vehicle or highway safety.
	1. crumple zones 2. airbags 3. break-away light poles
9:42	Conserving Momentum and Energy - It's the Law! In a collision of two cars of unequal mass, the occupants of the lighter car would experience much higher <u>accelerations</u> , hence much higher <u>forces</u> than the occupants of the heavier car.
12:55	Motion related energy is called <u>kinetic energy</u> . Energy due to an object's position or conditions is called <u>potential energy</u> .
13:50	At what point in the pendulum's swing is its potential energy equal to its kinetic energy? <u>mld-point</u> When is its kinetic energy at its maximum? <u>bottom</u>
14:30	Circle) the correct formula for kinetic energy (KE).
	$KE = 1/2 \text{ m2v}$ $KE = 1/2 \text{ 2mv}^2$ $KE = 1/2 \text{ mv}^2$ $KE = 1/2 \text{ mv}^2$