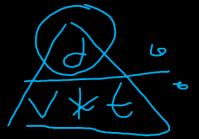


- There are two types of quantities used to describe the motion of an object
 - Scalar quantities describe only the magnitude, or size
 - Vector quantities describe both magnitude and direction

- Position is the location of an object at one specific moment in time
 - Examples: Jim is 2mi north of the store, Karla is to the 1.5m left of Anna, Manuel is 5m from the finish line
 - It can be positive or negative
 - Forward, right, up, north, and east are generally considered positive directions
 - Backward, left, down, south, and west and generally considered negative directions
 - Variable is d

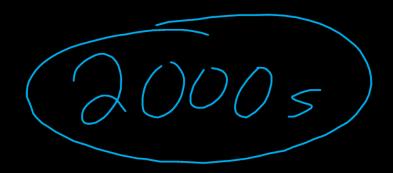
- Distance is how far an object has travelled
 - Examples: Bianca drove 15 miles, Geoffrey ran 400 meters, Karson jumped 3ft
 - It is always positive, which makes it a scalar quantity
 - It takes the entire journey into account
 - Example: The mouse walked 1m left, then 0.5m right, then 1m left, so the mouse covered a distance of 2.5m


- Displacement is how far an object has travelled in a given direction
 - Examples: Young drove 15 miles east, Salazar ran 400 meters to the right, Missy jumped 3ft forward
 - Can be positive or negative, which makes it a vector quantity
 - Only takes initial and final position into account
 - Example: The mouse walked 1m left, then 0.5m right, then 1m left, so the mouse had a displacement of 1.5m left
 - If the final position is the same as the initial position, then the displacement is zero

- Speed is how far something travels in a given amount of time aka how fast
 - Speed is always positive, and therefore scalar
 - The variable is s
 - The unit is meters/second or m/s
 - Formula is $s = |\Delta d| / t$
 - This formula is not provided for you because you are expected to use the velocity formula and just ignore direction

- Velocity is how far something travels in a given amount of time AND in a given direction
 - Velocity can be positive or negative, and is therefore a vector
 - The variable is v
 - The unit is meters/second or m/s
 - Formula is $v = \Delta d / t$

Example Problems


1. Speed Racer completed the <u>30km</u> race in <u>15 minutes</u>. At what speed must he have been traveling to do so?

 $|\rangle$

Example Problems

2. If Fred Flintstone drives to work at an average speed of 2.0m/s, how
long will it take him to drive the 4000m?

Example Problems

3. When spooked, Scooby Doo is capable of running 7m/s. How far will Scooby Doo get from the "ghost" if he runs for 35s?

(7m/8)(358) f2

