Acids & Bases

Acids

- lons
 - Hydrogen
- pH
 - 6 or less
- Taste
 - Sour
- Feel
 - Sticky

- Other
 - Corrode metals
- Indicators
 - Turns litmus paper red
 - Phenolphthalein does not change
- Examples
 - Lemon juice, vinegar, tomato juice, black coffee, soda, urine, saliva

Bases

- lons
 - Hydroxide
- pH
 - 8 or more
- Taste
 - Bitter
- Feel
 - Slippery

- Other
 - AKA Alkaline
- Indicators
 - Turns litmus paper blue
 - Phenolphthalein turns pink
- Examples
 - Sea water, baking soda, soap, bleach, ammonia, drain cleaner

Neutral Substances

- Compounds that have a pH of 7 are said to be neutral
 - Why is pure water neutral?
 - It produces both hydrogen & hydroxide ions

pH Scale

- The pH scale measures the concentration of hydrogen ions
 - The more hydrogen ions produced, the lower the number is
 - The pH scale is a log-based scale, which means that each value is 10x different than the next one
- There is also a pOH scale that measures hydroxide ion concentration
 - It is the exact opposite of the pH scale

Acid-Base Neutralization Reactions

- When an acid and a base are reacted together, the products are pure water and a neutral compound called a salt
 - Salt does NOT mean the stuff on your kitchen table;
 NaCl is only one type of salt
 - A salt is any ionic solid created by an acid-base neutralization reaction

Acid-Base Neutralization Reaction Examples

• 1 HCl + 1 NaOH
$$\rightarrow$$
 1 H₂O + 1 NaCl

•
$$1 \text{ Ca(OH)}_2 + 1 \text{ H}_2\text{CO}_3 \rightarrow 1 \text{ CaCO}_3 + 2 \text{ HOH}$$

• 1
$$H_2SO_4$$
 + 2 $NH_4OH \rightarrow$ 2 HOH + 1 $(NH_4)_2SO_4$

• 1
$$HNO_3$$
 + 1 $KOH \rightarrow 1 KNO_3$ + 1 H_2O

