# TWO- COLUMN PROOF

Geometry Unit 2: Reasoning and Proof



# TWO- COLUMN PROOF

Proof with numbered statements and reasons in

logical order.

| Statements          | Reasons                 |
|---------------------|-------------------------|
| The items we        | The items we include    |
| include in this     | in this portion of our  |
| portion of our two- | two-column geometric    |
| column geometric    | proof will explain why  |
| proof will show the | the corresponding       |
| progression of our  | statements are true.    |
| argument. They are  | They justify any claims |
| the claims we       | we make.                |
| believe to be true. |                         |



#### GIVEN AND PROOF

- Write a two column proof for the following:
  - If A, B, C, and D are points on a line, in the given order, and AB = CD, then AC = BD.
    - •NOTE: The if part of the statement is the given part. The then part it the section you must prove. Use a diagram to show the given information.



### **DIAGRAMS**

- It is helpful to draw a diagram before you begin your proof. Draw the diagram for the example below:
  - If A, B, C, and D are points on a line, in the given order, and AB = CD, then AC = BD.



# BEGINNING A TWO- COLUMN PROOF

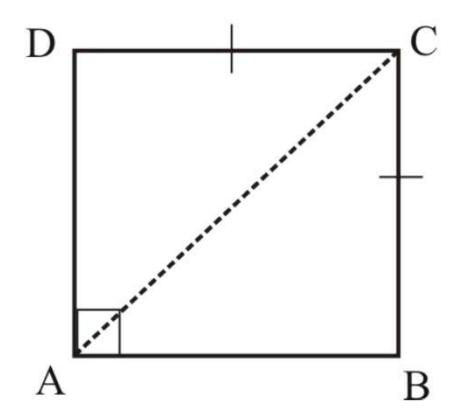
- •If A, B, C, and D are points on a line, in the given order, and AB = CD, then AC = BD.
  - Start by writing the given and prove statements at the top.
    - •Given: A, B, C, and D are points in a line in the order given. AB = CD.
    - ■Prove: AC = BD.



### CONTINUING A TWO-COLUMN PROOF

- Begin by creating two columns; a statement column and a proof column.
- •The first statement will ALWAYS be your given statement with the reasoning being given.
- •The continuing statements will be from your reasoning from postulates, definitions, and theorems.




### **SYMBOLS**

- Segment, Angle, Ray, Line, Point, etc.
- Tick Marks
  - Segments
  - •Angles
- Parallel
- Perpendicular
- •Measure of Angles



# USING DIAGRAMS

- •Which can you assume true?
  - ■AD ≈ BC
  - ■AB  $\approx$  CD
  - •CD ≈ BC
  - •AB | | CD
  - **■**AB *⊥ AD*
  - ABCD is a square
  - ABCD is a rectangle
  - $-M < DCA = 45^{\circ}$
  - $M < CAB = 45^{\circ}$





# TWO- COLUMN PROOF

If A, B, C, and D are points on a line, in the given order, and AB = CD, then AC = BD.

| Statement                                 | Reason                            |
|-------------------------------------------|-----------------------------------|
| 1. AB = CD                                | 1. Given                          |
| 2. A, B, C, D are collinear in that order | 2. Given                          |
| 3. BC = BC                                | 3. Reflexive Property of Segments |
| 4. $AC = AB + BC$ and $BD = CD + BC$      | 4. Segment Addition Postulate     |
| 5. AB + BC = CD + BC                      | 5. Addition Property of Equality  |
| 6. AC = BD                                | 6. Substitution Property          |



•Given: BF bisects <ABC; <ABD  $\approx$  <CBE.

■Prove: <DBF  $\approx$  <EBF.

| Statement | Reason   |
|-----------|----------|
| 1.        | 1. Given |
| 2.        | 2.       |
| 3.        | 3.       |
| 4.        | 4.       |
| 5.        | 5.       |
| 6.        | 6.       |
| 7.        | 7.       |
| 8.        | 8.       |
| 9.        | 9.       |

•Given:  $\langle A \approx \langle B \text{ and } \langle C \approx \langle D \rangle$ .

•Prove: m < A + m < C = m < B + m < D.

| Statement | Reason   |
|-----------|----------|
| 1.        | 1. Given |
| 2.        | 2.       |
| 3.        | 3.       |
| 4.        | 4.       |



•Given: A, B, C, and D are collinear and AB  $\approx$  CD.

■Prove:  $AC \approx BD$ .

| Statement | Reason   |
|-----------|----------|
| 1.        | 1. Given |
| 2.        | 2.       |
| 3.        | 3.       |
| 4.        | 4.       |
| 5.        | 5.       |
| 6.        | 6.       |
| 7.        | 7.       |
| 8.        | 8.       |
| 9.        | 9.       |

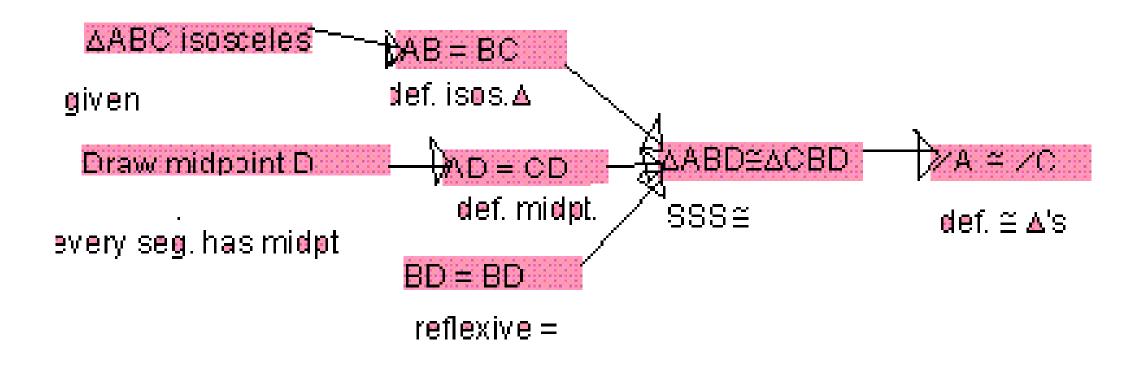
•Given: <A and <B are supplementary angles and < A and <C are supplementary angles.

Prove: AC ≈ BD.

| Statement | Reason   |
|-----------|----------|
| 1.        | 1. Given |
| 2.        | 2.       |
| 3.        | 3.       |
| 4.        | 4.       |
| 5.        | 5.       |
| 6.        | 6.       |



•Given: <A and <B are supplementary angles and < A and <C are supplementary angles.

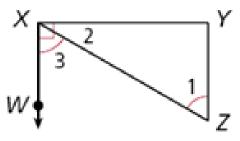

Prove: AC ≈ BD.

| Statement | Reason   |
|-----------|----------|
| 1.        | 1. Given |
| 2.        | 2.       |
| 3.        | 3.       |
| 4.        | 4.       |
| 5.        | 5.       |
| 6.        | 6.       |



# OTHER TYPES OF PROOFS

# FLOW PROOF






### PARAGRAPH PROOF

Given:  $\angle WXY$  is a right angle.  $\angle 1 \cong \angle 3$ 

Prove:  $\angle 1$  and  $\angle 2$  are complementary.



Paragraph Proof: Since  $\angle WXY$  is a right angle,  $m\angle WXY = 90^\circ$  by the definition of a right angle. By the Angle Addition Postulate,  $m\angle WXY = m\angle 2 + m\angle 3$ . By substitution,  $m\angle 2 + m\angle 3 = 90^\circ$ . Since  $\angle 1 \cong \angle 3$ ,  $m\angle 1 = m\angle 3$  by the definition of congruent angles. Using substitution,  $m\angle 2 + m\angle 1 = 90^\circ$ . Thus by the definition of complementary angles,  $\angle 1$  and  $\angle 2$  are complementary.

