Chapter 10: Comparing Two Populations or Groups

Key Vocabulary:

- difference between two proportions
- two sample z interval for proportions
- two sample z test for difference between two proportions
- two sample z statistic
- two sample t statistic

- pooled combined sample proportion
- standard error
- randomization distribution
- paired t-test
- two sample t test for means
- two sample t interval for means
- difference between two means
- pooled two sample t statistic

10.1 Comparing Two Proportions

- 1. Summarize the three properties of a sampling distribution of a sample proportion:
 - Shape
 - Center
 - Spread

The Practice of Statistics (4th Edition) - Starnes, Yates, Moore

- 2. What are the shape, center, and spread of the sampling distribution of $p_1 p_2$? Provide the formulas for the mean and standard deviation.
 - Shape
 - Center
 - Spread
- 3. What conditions need to be met for the sampling distribution of $p_1 p_2$?

4. Give the formula for the *standard error* when calculating a confidence interval for $p_1 - p_2$, and define each variable in the equation.

5. What is the confidence interval for $p_1 - p_2$?

- 6. What conditions must be met in order to use the Two-sample z Interval for a Difference between Two Proportions?
 - Random
 - Normal
 - Independent

8. Use the example, *Teens and Adults on Social Networking Sites*, to outline how to construct and interpret a confidence interval for the difference between two proportions, $p_1 - p_2$.

9. State the null hypothesis for a *two proportion significance test*.

- 10. What does p_c represent, and how is it calculated?
- 11. Why do we *pool* the sample proportions?
- 12. Give the formula for the *two-proportion z-statistic*, and define each variable in the equation.a. Is this on the formula sheet? What does the test statistic measure?

The Practice of Statistics (4th Edition) - Starnes, Yates, Moore

13. State and use diagrams to illustrate the three possible alternative hypotheses for a *two proportion ztest*.

14. What are the *conditions* for conducting a two-sample *z* test for a difference between proportions?

15. How are these *different* than the conditions for a one-sample *z* interval for *p*?

- 16. Describe the *randomization distribution*.
- 17. What must you be careful about when *defining parameters* in experiments? How can this be avoided?
- 18. Can you use your calculator for the *Do* step? Are there any drawbacks?
 - a. What are the calculator commands for the two-sample z test and interval for $p_1 p_2$?

10.2 Comparing Two Means (pp.627-648)

- 1. Summarize the three properties of a sampling distribution of a *sample mean*:
 - Shape
 - Center
 - Spread
- 2. What are the shape, center, and spread of the sampling distribution of $\overline{x_1} \overline{x_2}$? Give the formula for the mean and standard deviation.
 - Shape
 - Center
 - Spread
- 3. What are the conditions for the sampling distribution of $\overline{x}_1 \overline{x}_2$?

- 4. Give the formula for the *two-sample t-statistic*, and define each variable in the equation.
 - a. Is this on the formula sheet? What does it measure?

The Practice of Statistics (4th Edition) - Starnes, Yates, Moore

- 5. What is the standard error of $\overline{x}_1 \overline{x}_2$? Is this on the formula sheet?
- 6. What distribution does the two-sample *t* statistic have?
- 7. Why do we use a *t* statistic rather than a *z* statistic?
- 8. Without using technology, how do you estimate the degrees of freedom when using two-sample tprocedures? Do not need to know.

9. How do you calculate the confidence interval for $\mu_1 - \mu_2$?

10. In a two-sample t interval problem, what conditions must be met for comparing two means?

11. What are the conditions for conducting a two-sample *t* test for $\mu_1 - \mu_2$?

12. Draw a sketch of the three possible scenarios for the alternative hypothesis.

13. Describe the Normal Condition when using the two sample t procedures.

- 14. What calculator commands are used for a two-sample t test and interval for $\mu_1 \mu_2$?
- 15. How do you proceed when using two-sample t procedures to check the Normal Condition in the following cases:
 - Sample size less than 15
 - Sample size at least 15
 - Large samples

16. In a two-sample problem, must/should the two sample sizes be equal?

17. When doing two-sample *t* procedures, should we pool the data to estimate a common standard deviation? Is there any benefit? Are there any risks?