
Tecplot, Inc. Bellevue, WA 2006

Data Format Guide

COPYRIGHT NOTICE

Tecplot 360TMData Format Guide is for use with Tecplot 360TM 2006.

Copyright © 1988-2006 Tecplot, Inc. All rights reserved worldwide. Except for personal use, this manual may not be reproduced, trans-
mitted, transcribed, stored in a retrieval system, or translated in any form, in whole or in part, without the express written permission of
Tecplot, Inc., 3535 Factoria Blvd., Ste 550, Bellevue, Washington, 98006, U.S.A.

The software discussed in this documentation and the documentation itself are furnished under license for utilization and duplication
only according to the license terms. The copyright for the software is held by Tecplot, Inc. Documentation is provided for information
only. It is subject to change without notice. It should not be interpreted as a commitment by Tecplot, Inc. Tecplot, Inc. assumes no liabil-
ity or responsibility for documentation errors or inaccuracies.

Tecplot, Inc
PO Box 52708
Bellevue, WA 98015-2708 U.S.A.
Tel: 1.800.763.7005 (within the U.S. or Canada), 00 1 (425)653-1200 (internationally)
email: sales@tecplot.com, support@tecplot.com
Questions, comments or concerns regarding this documentation: documentation@tecplot.com
For more information, visit http://www.tecplot.com

THIRD PARTY SOFTWARE COPYRIGHT NOTICES

ENCSA Hierarchical Data Format (HDF) Software Library and Utilities © 1988-1998 The Board of Trustees of the University of Illi-
nois. All rights reserved. Contributors include National Center for Supercomputing Applications (NCSA) at the University of Illinois,
Fortner Software (Windows and Mac), Unidata Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and
Mark Adler (gzip). Bmptopnm, Netpbm © 1992 David W. Sanderson. Dlcompat © 2002 Jorge Acereda, additions and modifications by
Peter O’Gorman. Ppmtopict © 1990 Ken Yap.

TRADEMARKS

Tecplot®, Tecplot 360TM, PreplotTM, Enjoy the ViewTM, and FramerTM are registered trademarks or trademarks of Tecplot, Inc. in the
United States and other countries.

Encapsulated PostScript, PostScript, Premier are registered trademarks or trademarks of Adobe Systems, Incorporated in the U.S. and/
or other countries. Ghostscript is a registered trademark of Aladdin Enterprises in the U.S. and/or other countries. Linotronic, Helvetica,
Times are registered trademarks or trademarks of Allied Corporation in the U.S. and other countries. AutoCAD, DXF are registered
trademarks or trademarks of Autodesk, Incorporated in the U.S. and other countries. Élan License Manager is a trademark of Élan Com-
puter Group, Incorporated in the U.S. and/or other countries. DEC, Digital, LaserJet, HP-GL, HP-GL/2, PaintJet are registered trade-
marks or trademarks of Hewlett-Packard Company in the U.S. and other countries. X-Designer is a registered trademark or trademark
of Imperial Software Technology in the U.S. and/or other countries. Builder Xcessory is a registered trademark or trademark of Inte-
grated Computer Solutions, Incorporated in the U.S. and other countries. IBM, RS6000, PC/DOS are registered trademarks or trade-
marks of International Business Machines Corporation in the U.S. and/or other countries. Bookman is a registered trademark or
trademark of ITC Corporation in the U.S. and/or other countries. VIP is a registered trademark or trademark of Landmark Graphics
Corporation in the U.S. and/or other countries. X Windows is a registered trademark or trademark of Massachusetts Institute of Tech-
nology in the U.S. and/or other countries. ActiveX, Excel, MS-DOS, Microsoft, Visual Basic, Visual C++, Visual J++, Visual Studio,
Windows, Windows Metafile are registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries. HDF,
NCSA are registered trademarks or trademarks of National Center for Supercomputing Applications in the U.S. and/or other countries.
UNIX, Motif are registered trademarks or trademarks of Open Software Foundation, Incorporated in the U.S. and other countries. Grid-
gen is a registered trademark or trademark of Pointwise, Incorporated in the U.S. and/or other countries. Eclipse, FrontSim are regis-
tered trademarks or trademarks of Schlumberger, Limited in the U.S. and/or other countries. IRIS, IRIX, OpenGL are registered
trademarks or trademarks of Silicon Graphics, Incorporated in the U.S. and/or other countries. Solaris, Sun, Sun Raster are registered
trademarks or trademarks of Sun MicroSystems, Incorporated in the U.S. and/or other countries. All other product names mentioned
herein are trademarks or registered trademarks of their respective owners.

NOTICE TO U.S. GOVERNMENT END-USERS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the
Commercial Computer-Restricted Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rights in Tech-
nical Data and Computer Software clause at DFARS 252.227-7013, and/or in similar or successor clauses in the DOD or NASA FAR
Supplement. Contractor/manufacturer is Tecplot, Inc., Post Office Box 52708, Bellevue, WA 98015-2708.

06-360-15-1

Rev 03/2006

3

Chapter 1 Best Practices...5
Create Binary Data Files instead of ASCII 5
Use Block Format instead of Point Format 6
Use the Native Byte Ordering for the Target Machine 6
Add Auxiliary data to Preset Variable Assignments in Tecplot 6
Data Sharing .. 6
Passive Variables ... 6

Chapter 2 ASCII Data...9
ASCII Data File Records... 9
ASCII Data File Parameters .. 30
Ordered Data ... 32
I-Ordered Data ...32
IJ-Ordered Data ...37
IJK-Ordered Data...44

Finite-Element Data .. 48
Variable and Connectivity List Sharing..53
ASCII Data File Conversion to Binary ..55
Finite-Element Data Sets..58

Chapter 3 Binary Data..71
Function Summary .. 71
Deprecated Binary Functions .. 72
Binary Data File Function Calling Sequence 73
Writing to Multiple Binary Data Files .. 74
Character Strings in FORTRAN.. 74
Boolean Flags .. 74
Binary Data File Function Reference.. 74
Example Programs ...94

4

5

Create Binary Data Files instead of ASCII

Chapter 1 Best Practices

Tecplot can read in data produced in many different formats, one of which is its own native format.
Users who wish to generate native Tecplot data files automatically from applications such as com-
plex flow solvers have a number of options for what to put in the file and how it is made. This sec-
tion outlines a few "best practices" for writing Tecplot data files.

1 - 1 Create Binary Data Files instead of ASCII
All else being equal, binary data files are more efficient than ASCII files, in terms of space and
time. To create binary data files, you must make calls to functions provided by the TECIO library
(See the 3 - 7 “Binary Data File Function Reference” on page 74). To create ASCII files, you can
write-out plain text using standard write statements.

There are some cases where ASCII files are preferred. Create ASCII files when:

• Your data files are small.

• Your application runs on a platform for which the TECIO library is not pro-
vided. Even if this is the case, please contact Tecplot Inc. There may be a way
to resolve this issue.

Tecplot includes a utility called Preplot which allows you to
convert an ASCII file into a binary file. See “Preplot” in the
Tecplot 360 User’s Manual for more information on how to
use Preplot.

6

1 - 2 Use Block Format instead of Point Format
Block format is by far the most efficient format when it comes to loading the file into Tecplot. If
your data files are small and you can only obtain the data in a point-like format in (like a spread-
sheet), then using point format is acceptable.

1 - 3 Use the Native Byte Ordering for the Target Machine
When you create binary data, you can elect to produce these files in either Motorola byte order or
Intel byte order. Tecplot automatically detects the byte order and loads both types. However, it is
more efficient if you produce files using the byte order used on the platform where you run Tecplot.
For example if you produce a binary file on an SGI platform and then transfer the data to a Win-
dows or Intel-based Linux box, you should to set the flag to reverse the bytes when generating the
binary data file. See the notes about this option in “Preplot” in the Tecplot 360 User’s Manual for
the Preplot flag.

1 - 4 Add Auxiliary data to Preset Variable Assignments in Tecplot
 Zone Auxiliary data can be used to give Tecplot hints about properties of your data. For example,
this can be used to like set the defaults for which variables to use for certain kinds of plots. Auxil-
iary data is supported by both binary and ASCII formats. For a list of auxiliary data names, see
"Using Standardized Auxiliary Data" in the ADK Users manual.

1 - 5 Data Sharing
Share variables whenever possible. Variable sharing is commonly used for the spatial variables
(X, Y, and Z) when you have many sets of data that use the same basic grid. This saves both disk
space and space when loaded into Tecplot. In addition, the benefits are compounded with scratch
data derived from these variables because it is also shared within Tecplot. See also Data Sharing in
the Tecplot 360 User’s Manual.

1 - 6 Passive Variables
Tecplot can manage many datasets at the same time. However, within a given dataset you must sup-
ply the same number of variables for each zone. In some cases you may have data where there are
many variables and, for some of the zones some of those variables are not important. If that is the

NOTE: ASCII files in point format will be
in point format when converted to binary
format using Preplot.

7

Passive Variables

case you can make selected variables in selected zones passive. A passive variable is one that will
always return the value zero if queried (like in a probe) but will not involve itself in operations like
the calculations of the min and max range. This is very useful when it comes to calculating such as
default contour levels.

8

9

ASCII Data File Records

Chapter 2 ASCII Data

This chapter discusses how to format data so data files may be loaded directly into Tecplot. Data
files read by Tecplot may be binary or ASCII. The following sections describe the format of ASCII
data files. Reading an ASCII data file into Tecplot can be much slower than reading a binary data
file, as binary data files take up less disk space and Tecplot must convert from ASCII to binary.

Tecplot or Preplot converts ASCII data files to binary. See Tecplot Format Data File Loading in the
Tecplot 360 User’s Manual for converting with Tecplot, or Section 2- 4.2, “ASCII Data File Con-
version to Binary,”for converting with Preplot. Documentation on the binary format is included as
comments in the Preplot source code (located in TEC360HOME/Util/preplot). Finally, if your data
is generated in FORTRAN or C, you may be able to generate binary data files directly using the
utilities described in 3, “Binary Data,”.

You can also load data generated by, or tabulated in, other software packages. In addition, data
loaders using Tecplot’s Add-on Developer’s Kit (ADK) are available from Tecplot. These convert
data from a number of software packages into a Tecplot-readable format. (This is described in
Data Loaders in the Tecplot 360 User’s Manual) Using ADK, you can write loaders of your own.

2 - 1 ASCII Data File Records
An ASCII data file begins with an optional file header defining a title for the data file and or the
names of the variables. The header is followed by optional zone records containing the plot data.
Zone records may contain ordered or finite-element data. You may also include text, geometry, and
custom-label records that create text, geometries, and/or custom labels on plots. Each data file may
have up to 32,700 zone records, ten custom label records, and any number of text and geometry
records. These records may be in any order.

The first line in a zone, text, geometry, custom label, or data set auxiliary data record begins with
the keyword ZONE, TEXT, GEOMETRY, CUSTOMLABELS, DATASETAUXDATA, or VARAUX-
DATA. The maximum length of a line in a data file is 4,000 characters (unless you edit and recom-
pile the Preplot source code). Any line may be continued onto one or more following lines (except
for text enclosed in double quotes ["]). Double quotes must be used to enclose character strings
with embedded blank spaces or other special characters. A backslash (\) may be used to remove
the significance of (or escape) the next character (that is, \" produces a single double-quote). Any
line beginning with an octothorp (#) is treated as a comment and ignored.

The following simple example of a Tecplot ASCII data file has one small zone and a single line of
text:

10

TITLE="Simple Data File"
VARIABLES="X" "Y"
ZONE I=4 F=POINT
1 1
2 1
2 2
1 2
TEXT X=10 Y=90 T="Simple Text"

The format of the ASCII data file is summarized in Section , “Summary of Data File Records”.

File Header
In the file header of your data file, you may specify an optional title that is displayed in the headers
of Tecplot frames. The title line begins with TITLE=, followed by the title text enclosed in double-
quotes. You may also assign a name to each of the variables by including a line that begins with
VARIABLES=, followed by each variable’s name enclosed in double quotes. The quoted variable
names should be separated by spaces or commas. Tecplot calculates the number of variables (N)
from the list of variable names. If you do not specify the variable names (and your first zone has
POINT data packing), Tecplot sets the number of variables equal to the number of numeric values
in the first line of zone data for the first zone, and names the variables V1, V2, V3, and so forth.

Initially, Tecplot uses the first two variables in data files as the X- and Y-coordinates, and the third
variable for the Z-coordinate of 3D plots. You may, however, order the variables in the data file any
way you want, since you can interactively reassign the variables to the X-, Y-, and or Z-axes using
Tecplot dialogs.

Dataset and variable auxiliary data is added to the datafile using the DATASETAUXDATA and
VARAUXDATA records. Auxiliary data are name/value pairs that a user can specify and then use
in Tecplot with dynamic text, equations, macros, or add-ons. Multiple auxiliary data can be added
at the dataset level as follows:

DATASETAUXDATA SampleNumber=”5”
DATASETAUXDATA AOA=”5.7”

Variable auxiliary data is added to Tecplot on a per variable basis. Like dataset auxiliary data multi-
ple items can be added for each variable:

VARAUXDATA 1 MyData=”Hello”
VARAUXDATA 1 MoreData=”World”
VARAUXDATA 2 MyData=”More information”
VARAUXDATA 2 MoreData=”hi mom”
VARAUXDATA 2 MyExtraData=”Some extra data”

11

ASCII Data File Records

The variable number with which the auxiliary data is associated immediately follows the
VARAUXDATA record. Also note that the data associated with a particular auxiliary data name are
unique for each variable. Therefore the same named item can be added to each variable if desired.
Conversely a particular auxiliary data item can be added to only one variable.

If the file header occurs in a place other than at the top of the data file, a warning is printed and the
header is ignored. This allows you to concatenate two or more ASCII data files before using Tec-
plot (provided each data file has the same number of variables per data point).

Zone Records
A zone record consists of a control line that begins with the keyword ZONE followed by a set of
numerical data called the zone data. The format of the zone control line is shown in Section , “Sum-
mary of Data File Records”.

The ZONETYPE Parameter. The zone data are of the type specified by the ZONETYPE
parameter in the control line. There are two basic types of zones: ordered and finite-element.
Ordered zones have the formats ZONETYPE=ORDERED. Finite-element zones have the specific
ZONETYPE of FELINESEG, FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON, or
FEBRICK. ORDERED is presumed if the ZONETYPE parameter is omitted. See Section 2 - 3,
“Ordered Data,”for more information on ordered zones, and Section 2 - 4, “Finite-Element
Data,”for details on finite-element data.

The DATAPACKING Parameter. The zone data packing is specified by the DATAPACK-
ING parameter in the control line. There are two data packing options: POINT and BLOCK.

In POINT format, the values for all variables are given for the first point, then the second point, and
so on. In BLOCK format, all of the values for the first variable are given in a block, then all of the
values for the second variable, then all of the values for the third, and so forth. Zones with cell-cen-
tered data must use BLOCK data packing. More detail on this is given below.

POINT Format Example. If you have only one zone of data in POINT data packing format,
and it is one-dimensional (that is, JMax=1, KMax =1), you may omit the zone control line. If you
want Tecplot to determine the number of variables, you may create a data file with only the zone
data, such as the following:

12.5 23 45 1.
14.3 24 46 2.
12.2 24 50 3.
13.3 26 51 4.
13.5 27 55 5.

12

Tecplot calculates the number of data points (IMax) in the zone by assuming that each row repre-
sents a data point and each column represents a variable, and creates an I-ordered zone. This type of
structure is good for XY-plots and scatter plots. If there are multiple zones, two- or three-dimen-
sional zones, finite-element zones, or BLOCK-format zone data, you must include a zone control
line at the beginning of each zone record.

Data Types. Each variable in each zone in the data file may have its own data type. Tecplot sup-
ports the following six data types:

• DOUBLE (eight-byte floating point values).

• SINGLE (four-byte floating point values).

• LONGINT (four-byte integer values).

• SHORTINT (two-byte integer values).

• BYTE (one-byte integer values, from 0 to 255).

• BIT

The data type determines the amount of storage Tecplot assigns to each variable. Therefore, the
lowest level data type should be used whenever possible. For example, imaging data, which usually
consists of numerical values ranging from zero to 255, should be given a data type of BYTE. By
default, Tecplot treats numeric data as data type SINGLE. If any variable in the zone uses the BIT
data type, the zone format must be BLOCK or FEBLOCK; you cannot use POINT or FEPOINT for-
mat.

Variable Location. Each variable in each zone in a data file may be located at the nodes or the
cell-centers. Each variable is specified as NODAL or CELLCENTERED in the VARLOCATION
parameter array, located in the control line. The format is:

VARLOCATION=([set-of-vars]=var-location,[set-of-vars]=var-
location, ...)

where set-of-vars is the set of the variables and var-location is either NODAL or CELLCENTERED.
Variables omitted from the list are assumed to be NODAL. For example:

VARLOCATION=([3-7,10]=CELLCENTERED, [11-12]=CELLCENTERED)

specifies that variables 3 through 7, 10, 11 and 12 are cell-centered and all other variables are, by
default, nodal for this zone.

13

ASCII Data File Records

All cell-centered variables must list one value for each element. With nodal variables, one value
must be listed for each node. Zones with cell-centered variables must be in BLOCK data packing
format.

Data Lists. Numerical values in zone data must be separated by one or more spaces, commas,
tabs, new lines, or carriage returns. Blank lines are ignored. Integer (101325), floating point
(101325.0), and exponential (1.01325E+05) numbers are accepted. To repeat a particular
number in the data, precede it with a repetition number as follows: “Rep*Num,” where Rep is the
repetition factor and Num is some numeric value to be repeated. For example, you may represent 37
values of 120.5 followed by 100 values of 0.0 as follows:

37*120.5, 100*0.0

Zone Auxiliary Data. Auxiliary data strings associated with the current zone are specified
with AUXDATA parameter in the control line. This auxiliary data may be used in dynamic text,
equations, macros, or add-ons. Auxiliary data is provided as named strings:

AUXDATA EXPERIMENTDATE ="October 13, 2002, 8 A.M."

There may be multiple AUXDATA parameters in the control line for a zone, but names must be
unique.

Variable Sharing between Zones. Frequently, some variables are exactly the same for a set
of zones. For example, a series of zones may contain measurement or simulation data at the same
XYZ-locations, but different times. In this case, Tecplot’s memory usage may be dramatically
reduced by sharing the coordinate variables between the zones. The zones that variables are shared
from are specified in the VARSHARELIST in the control line of the current zone. The format is:

VARSHARELIST=([set-of-vars]=zzz, [set-of-vars]=zzz)

where set-of-vars is the set of variables that are shared and zzz is the zone they are shared from. If
zzz is omitted, the variables are shared from the previous zone. For example:

VARSHARELIST=([4-6,11]=3, [20-23]=1, [13,15])

specifies that variables 4, 5, 6 and 11 are shared from zone 3, variables 20, 21, 22, and 23 are shared
from zone 1, and variables 13 and 15 are shared from the previous zone. For variable sharing,
ordered zones may only share with ordered zones having the same dimensions. Finite-element
zones may share with any zone having the same number of nodes, for nodal variables, or the same
number of cells, for cell-centered data.

The connectivity list (finite-element only) and face-neighbors may be shared between zones using
the CONNECTIVITYSHAREZONE parameter in the control line of the current zone. The format is:

14

CONNECTIVITYSHAREZONE=nnn

where nnn is the number of the zone that the connectivity is shared from. To use connectivity shar-
ing, the zone must have the same number of points and elements, and be the same zone type.

Face Neighbors. The implicit connections between elements in a zone may be overridden, or
connections between cells in adjacent zones established, using the FACENEIGHBORMODE
parameter and FACENEIGHBORCONNECTIONS list in the control line of the zone.
FACENEIGHBORMODE has four options: LOCALONETOONE, LOCALONETOMANY,
GLOBALONETOONE, and GLOBALONETOMANY. LOCALONETOONE is the default.

The nature of the FACENEIGHBORCONNECTIONS list depends upon the FACENEIGHBORMODE,
described in the table below. To connect the cells along one edge to cells on another edge of the
same zone, use LOCAL. To connect cells of one zone to cells of another zone or zones, use GLO-
BAL. If the points of the cells are exactly aligned with the neighboring cell points, use ONETOONE.
If even one cell face is neighbor to two other cell faces, use ONETOMANY

LOCALONETOONE 3 cz, fz, nc
LOCALONETOMANY nz+4 cz, fz, oz, nz, nc1, nc2, ..., ncn
GLOBALONETOONE 4 cz, fz, zr, cr
GLOBALONETOMANY 2*nz+4 cz, fz, oz, nz, zrl, crl, zr2, cr2,

..., zrn, crn

.

In this table, cz is the cell number in the current zone, fz is the number of the cell face in the cur-
rent zone, nc, is the cell number of the neighbor cell in the current zone, oz is face obscuration flag
(zero for face partially obscured, one for face entirely obscured), nz is the number of neighboring
cells for the ONETOMANY options, ncn is the number of the nth local zone neighboring cell in the
list, zr is the remote zone number, cr is the cell number of the neighboring cell in the remote zone,
zrn is the zone number of the nth neighboring cell in the GLOBALONETOMANY list, and crn is
the cell number in the remote zone of the nth neighboring cell in the GLOBALONETOMANY list.

Mode Number of Values Data

15

ASCII Data File Records

The cz, fz combinations must be unique; multiple entries are not allowed. The face numbers for
cells in the various zone types are defined in Figure 2-1.

f1 f2f3
f4

f5

f6

f1

f2
f3f4

Figure 2-1. Examples of brick (left) and tetrahedron (right) face neighbors.

A connection must be specified for two matching cell faces to be effective. For example, for data
with a FACENEIGHBORMODE of GLOBALONETOONE, if cell 6, face 2 in zone 9 should be
connected to cell 1, face 4 in zone 10, the connections for zone 9 must include the line:

6 2 10 1 (cell# face#, connecting zone#, connecting cell#)

And the connections for zone 10 must include this line:

1 4 9 6

Global face neighbors are useful for telling Tecplot about the connections between zones. This
could be used, for example, to smooth out the crease in Gouraud surface shading at zone bound-
aries. For cell-centered data, they can make contours and streamtraces more continuous at zone
boundaries.

Cell numbering. For ordered (IJ or IJK) zones, cell numbers are defined by the index value of
the first node, where Index = I + (J-1)*|MAXI| + (K-1)*|MAXI|*|MAXJ|. Because the number of
nodes in each direction is one greater than the number of cells in that direction, there is no cell to
correspond with the last point in each row. In the example below, there is no cell numbered “3”, yet
the first cell in the second row is numbered “4”. As you define face neighbors, it may help you to
think of a “ghost cell” at the end of each row (where I = MaxI) and at the end of each column in 3D
(where J = MaxJ). If you probe any cell, the Face Neighbor tab of the Probe dialog will show the
correct cell number.

16

Zone Types and Control Lines. As stated above, there are two distinct types of zones:
ordered zones and finite-element zones. Ordered zones are I-, IJ-, and IJK-ordered zones (ZONE-

17

ASCII Data File Records

TYPE=ORDERED). Finite-element zones are FE-line, -surface and -volume zones (ZONETYPE of
FELINESEG, FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON, and FEBRICK). The
control lines for these zone types differ in the parameters needed. Both zone types can use the C
(color), T (zonetitle), DATAPACKING, VARLOCATION, AUXDATA, and DT (datatype) parameters.

The T parameter specifies a title for the zone. This may be any text string up to 64 characters in
length. If you supply a longer text string, it is automatically truncated to the first 64 characters. The
titles of zones appear in the Zone Style and other dialogs, and, optionally, in the XY- plot legend.
(You can use keywords in the zone titles to identify sets of zones to enable/disable or to change
zone attributes.) The C parameter sets an initial color for the zone. This may be overridden interac-
tively, or by use of a stylesheet. The DT (type1, type2, type3, ...) parameter specifies the data types
for the variables in a zone.

For ordered zones, you may specify the I (IMax), J (JMax), and K (KMax) parameters, which store
the number of data points in the I, J, and K directions. J and K both default to 1. I must be specified
if J is used; I and J must be specified if K is used. If all are omitted, Tecplot assumes an I-ordered
zone and calculates IMax for you.

Note: I and J are not equivalent to either the number of variables or the number of data points. The
number of data points is equal to the product of I, J, and K.

For finite-element zones, described in Section 2 - 4, “Finite-Element Data,”you must specify the N
(numnodes) and may optionally include E (numelements), and or the NV (nodevalue) parameter. If
the E parameter is not specified, Tecplot calculates it from the number of node sets in the connec-
tivity list following the node data. The NV (nodevalue) parameter specifies the number of the vari-
ables representing the “Node” value in finite-element data. The NV parameter is used infrequently,
mostly when the order in which nodes are listed in the data file do not match the node numbering
desired in the plot.

Section 2 - 3, “Ordered Data,” provides examples of zone data in various formats, as well as sample
pieces of FORTRAN code that you can use as templates to print out your own data. Our sample
code is intended only as a general example—the zone data that it produces contains only one value
per line. You may want to modify the code to suit your own needs.

The SOLUTIONTIME Parameter. Each zone can optionally specify a floating point time
value representing it's solution time. Zones can be organized together by associating themselves to
the same STRANDID.

The STRANDID Parameter. Each zone can optionally specify an integer value associating
itself with a particular strand. More than one zone can associate itself with a particular strand and
differentiate itself from other zones by assigning different SOLUTIONTIME values. StrandID's must

18

be positive integer values greater than or equal to 1. By convention strandID's are successive inte-
ger values.

Text Record
Text records are used to import text directly from a data file. Text can also be imported into Tecplot
using a macro file. Text may be titles, labels, or other information. You may create data files
containing only text records and read them into Tecplot just as you would read any other data file.
You may delete and edit text originating from data files just like text created interactively.

The text record consists of a single control line. The control line starts with the keyword TEXT and
has one or more options:

• The text string is defined in the required T (text) parameter.

• The color is controlled by the C (color) parameter.

• Use the CS (coordinatesys) parameter to specify the text coordinate system,
either FRAME, GRID or GRID3D. If you specify the frame coordinate system
(the default), the values of the X (xorigin) and Y (yorigin) parameters are in
frame units; if you specify grid coordinates, X and Y are in grid units (that is,
units of the physical coordinate system). X and Y locate the anchor point of the
text string. For Polar Line plots, you may specify THETA and R instead of X
and Y. Specify X, Y and Z for GRID3D coordinates.

• Use the AN (textanchor) parameter to specify the position of the anchor point
relative to the text. There are nine possible anchor positions, as shown in Figure
2-2.

Left Center Right

Midleft Midcenter Midright

HeadrightHeadcenterHeadleft

Figure 2-2. Text anchor positions—values for the
AN parameter.

19

ASCII Data File Records

• Use the HU (heightunits) parameter to assign units for character heights. If the
CS parameter is FRAME, you can set HU to either FRAME or POINT. If the CS
parameter is GRID, you can set HU to either GRID or FRAME.

• Use the H parameter to specify the height; it is measured in the units defined by
the HU parameter.

• To include multiple lines of text in a single text record, include \\n in the text
string to indicate a new line.

• You can assign the line spacing for multi-line text using the LS (linespacing)
parameter. The default value, 1, gives single-spacing. Use 1.5 for line-and-a-
half spacing, 2 for double-spacing, and so on.

Optionally, you may draw a box around the text string using the BX (boxtype) parameter. The
parameters BXO (boxoutlinecolor), BXM (boxmargin), and LT (linethickness) are used if the boxtype
is HOLLOW or FILLED. The parameter BXF (boxfillcolor) is used only if the boxtype is FILLED.
The default boxtype, NOBOX, ignores all other box parameters.

The S (scope) parameter specifies the text scope. GLOBAL scope is the same as selecting the check
box Show in “Like” Frames in the Text Options dialog.

You may also use the ZN (zone) parameter to attach text to a specific zone or XY mapping. For fur-
ther information, see Section 16.1.6.4, "Attaching Text to Zones or X-Y Mapping."

Text Record Examples. You may attach a macro command to the text with the MFC parame-
ter. See Section 21 - 5 “Text and Geometry Links to Macros” on page 434 in the Tecplot 360 User’s
Manual.

Some simple examples of text records are shown below. The first text record specifies only the ori-
gin and the text. The next text record specifies the origin, color, font, and the text. The third text
record specifies the origin, height, box attributes, and text. Note that the control line for the text can
span multiple file lines if necessary (as in the third text record below). The last text record is an
example of using 3D text in Tecplot.

TEXT X=50, Y=50, T="Example Text"

TEXT X=10, Y=10, F=TIMES-BOLD, C=BLUE, T="Blue Text"

TEXT X=25, Y=90, CS=FRAME, HU=POINT, H=14,
 BX=FILLED, BXF=YELLOW, BXO=BLACK, LS=1.5,
 T="Box Text \\n Multi-lined text"

20

TEXT CS=GRID3D, X=0.23,Y=0.23,Z=0.5, T="Well 1"

Geometry Record
Geometry records are used to import geometries from a data file. Geometries are line drawings that
may be boundaries, arrows, or even representations of physical structures. You may create data
files containing only geometry and text records and read them into Tecplot. You may delete and edit
geometries originating from data files just like the geometries that you create interactively.

The geometry record control line begins with the keyword GEOMETRY. Use the CS (coordinatesys)
parameter to specify the geometry coordinate system, either FRAME or GRID. If you specify the
frame coordinate system (the default), the values of the X (xorigin) and Y (yorigin) parameters are
in frame units; if you specify grid coordinates, X and Y are in grid units (that is, units of the physical
coordinate system). For Polar Line plots, you may specify THETA and R for X and Y. X and Y (or
THETA and R) locate the anchor point, or origin, of the geometry, which is the center of a circle or
ellipse, the lower left corner of a square or rectangle, and the anchor point of a polyline. The anchor
point specifies the offset of all the points: if X=1, Y=1, and the first point is (1, 2), and the second
point is (2, 4), then Tecplot draws at (2, 3) (1+1, 2+1) then (3, 5) (2+1, 4+1). In other words, the
points for any geometry are always relative to the specified anchor point. The Z (zorigin) is speci-
fied only for LINE3D geometries, and, since LINE3D geometries are always in grid mode, Z is
always in units of the Z-axis.

Geometry types are selected with the T (geomtype) parameter. The available geometry types are
listed below:

• SQUARE - A square with lower left corner at X, Y.

• RECTANGLE - A rectangle with lower left corner at X, Y.

• CIRCLE - A circle centered at X, Y.

• ELLIPSE - An ellipse centered at X, Y.

• LINE - A set of 2D polylines (referred to as multi-polylines) anchored at X, Y.

• LINE3D - A set of 3D polylines (referred to as multi-polylines) anchored at
X, Y, Z.

The color of the geometry is controlled by the C (color) parameter. Any geometry type except
LINE3D may be filled with a color by using the FC (fillcolor) parameter. With both C (color) and
FC (fillcolor) on the control line, the geometry is outlined in one color and filled with another. Each
polyline of a LINE geometry is filled individually (by connecting the last point of the polyline with

21

ASCII Data File Records

the first). Not specifying the FC (fillcolor) parameter results in a hollow, or outlined, geometry
drawn in the color of the C (color) parameter.

You can control how geometries are drawn using the L (linetype), LT (linethickness), and PL (pat-
ternlength) parameters. You can set L to any of Tecplot’s line patterns (SOLID, DASHED, DOTTED,
DASHDOT, LONGDASH, DASHDOTDOT). You can set LT and PL to any value, using frame units.

The control line of the geometry is followed by geometry data. For SQUARE, the geometry data
consists of just one number: the side length of the square.

For RECTANGLE, the geometry data consists of two numbers: the first is the width (horizontal axis
dimension), and the second is the height (vertical axis dimension).

For CIRCLE, the geometry data is one number: the radius. For ELLIPSE, the geometry data con-
sists of two numbers: the first is the horizontal axis length and the second is the vertical axis length.
For both circles and ellipses, you can use the EP (numellipsepts) parameter to specify the number
of points used to draw circles and ellipses. All computer-generated curves are simply collections of
very short line segments; the EP parameter allows you to control how many line segments Tecplot
uses to approximate circles and ellipses. The default is 72.

For LINE and LINE3D geometries, the geometry data is controlled by the F (format) parameter.
These geometries may be specified in either POINT or BLOCK format. By default, POINT format
is assumed. Each geometry is specified by the total number of polylines, up to a maximum of 50.
Each polyline is defined by a number of points and a series of XY- or XYZ- coordinate points
between which the line segments are drawn. In POINT format, the XY- or XYZ-coordinates are
given together for each point. In BLOCK format, all the X-values are listed, then all the Y-values,
and (for LINE3D geometries) all the Z-values. All coordinates are relative to the X, Y, and Z speci-
fied on the control line. You can specify points in either single or double precision by setting the DT
(datatype) parameter to either SINGLE or DOUBLE.

For LINE geometries, you can specify arrowheads using the AAT (arrowheadattach), AST (arrow-
headstyle), ASZ (arrowheadsize), and AAN (arrowheadangle) parameters. See Section , “Summary of
Data File Records,”for details. These parameters provide the same functionality available when
you create a line geometry interactively.

The S (scope) parameter specifies the geometry’s scope. GLOBAL scope is the same as selecting the
check box Show in Like Frames in the Geometry dialog. See Geometry Details in the Tecplot 360
User’s Manual for details.

You may also use the ZN (zone) parameter to attach geometry to a specific zone or XY-mapping.

22

You may attach a macro command to the text with the MFC parameter. See Text & Geometry Links
to Macos in the Tecplot User’s Manual.

LINE3D geometries must be created in a data file. They may not be created interactively. LINE3D
geometries are always in grid mode. To view LINE3D geometries in Tecplot, your plot type must
be in 3D Cartesian, which requires at least one zone. Thus, a data file with only LINE3D geome-
tries is useful only as a supplement to other data files.

Geometry Record Examples. The following geometry record defines a rectangle of 40
width and 30 height:

GEOMETRY T=RECTANGLE
40 30

The following geometry record defines an origin and a red circle of 20 radius, with an origin of
(75, 75) that is filled with blue:

GEOMETRY X=75, Y=75, T=CIRCLE, C=RED, FC=BLUE,CS=FRAME
 20

The following geometry record defines an origin and two polylines, drawn using the Custom 3
color. The first polyline is composed of three points, the second of two points.

GEOMETRY X=50, Y=50, T=LINE, C=CUST3
 2
 3
 0 1
 0 0
 2 0
 2
 0 0
 1 2

In BLOCK format, the same geometry appears as:

GEOMETRY X=50, Y=50, T=LINE, C=CUST3, F=BLOCK, CS=FRAME
 2
 3
 0 0 2
 1 0 0
 2
 0 1
 0 2

23

ASCII Data File Records

The next geometry record defines a purple ellipse with a horizontal axis length of 20 and a vertical
axis length of 10, with an origin of (10, 70), that is filled with yellow.

GEOMETRY X=10, Y=70, T=ELLIPSE, C=PURPLE, FC=YELLOW
 20 10

The final geometry record is a 3D polyline with four points that is composed of one polyline using
the default origin of (0, 0, 0):

GEOMETRY T=LINE3D
 1
 4
 0 0 0
 1 2 2
 3 2 3
 4 1 2

In BLOCK format, this geometry record can be written as follows:

GEOMETRY T=LINE3D, F=BLOCK
 1
 4
 0 1 3 4
 0 2 2 1
 0 2 3 2

24

A More Detailed Example of a Geometry Record
In the TextGeom file shown below, there are four text records (showing a circle, ellipse, rectangle,
and line). A plot of the file is shown in Figure 2-3.

(Sketch) ⏐ 16 Jun 1998 ⏐

Example Text
Subtitle

Filled Box

Hollow Box

(Sketch) ⏐ 16 Jun 1998 ⏐

Figure 2-3. Text and geometries created from the sample in Section , “A
More Detailed Example of a Geometry Record”.

TEXT X=20, Y=85, F=HELV-BOLD, C=BLUE, H=7.5,
 T="Example Text"
TEXT X=20, Y=75, F=TIMES-BOLD, H=5, T="Subtitle"
TEXT X=80, Y=25, F=TIMES-ITALIC-BOLD, H=4, C=RED,
 BX=FILLED, BXF=YELLOW, BXM=50, BXO=CYAN,
 T="Filled Box"
TEXT X=41, Y=8, H=4, F=COURIER-BOLD,
 C=CUST3, BX=HOLLOW, BXO=CUST4, T="Hollow Box"
GEOMETRY X=50, Y=50, T=RECTANGLE, FC=WHITE, C=BLUE
 40 30
GEOMETRY X=30, Y=30, T=CIRCLE, FC=BLUE, C=GREEN
 20
GEOMETRY X=70, Y=65, T=LINE, FC=PURPLE, C=BLACK
 1
 4
 -10 0

25

ASCII Data File Records

 0 10
 010 10
 10 0.6
GEOMETRY T=LINE, C=CUST1
 2
 3
 5 50
 10 10
 20 10
 2
 15 15
 25 25
GEOMETRY X=60, Y=30, T=ELLIPSE, C=CUST8
 30 10

Custom Label Record
The custom label record is an optional record to define sets of text strings for use in custom labeling
the values of an axis, contour legend or value labels, or variable-value node labels. The custom
label record begins with the keyword CUSTOMLABELS, followed by one or more text strings. The
text strings must be enclosed within double quotes (“"”) if they contain any commas, spaces or
other special characters, or if they might be confused with valid data file keywords. Enclosing the
strings in double quotes is always recommended.

The first custom label string corresponds to a value of one on the axis, the next to a value of two,
the next to a value of three, and so forth. Custom labels may appear one to a line, or there may be
more than one on a line, separated by a comma or space. Multiple custom label records can be
present in a data file. If this is the case, you choose which set to assign to a given axis, contour leg-
end, or variable-value node labels. Custom labels are discussed in more detail in Using Custom
Labels in the Tecplot 360 User’s Manual.

A simple example of a custom-label record is shown below. MON corresponds to a value of 1, TUE
corresponds to 2, WED to 3, THU to 4, and FRI to 5. Since custom labels have a wrap-around
effect, MON also corresponds to the values 6, 11, and so forth.

CUSTOMLABELS "MON", "TUE", "WED", "THU", "FRI"

26

Data Set Auxiliary Data Record
There is frequently auxiliary data (or Metadata) that helps describe the data set. For example,
experimental data my have information about the facility and time at which the data was taken, and
other parameter that describe the experiment. Likewise, simulation results have auxiliary data (such
as reference quantities for non-dimensional data) needed to fully analyze and present the results.
This data may be concerning the data set as a whole or it can vary from zone to zone. The ASCII
file format for specifying auxiliary data associated with the data set are described here. The format
for zonal auxiliary data is described in Section 4.1.2.7.

The data set auxiliary data control line is as follows:

DATASETAUXDATA name-string = “value string”

where name-string is a unique character string with no spaces. There may be multiple DATASE-
TAUXDATA records but name-string must be unique for each one.

Auxiliary data may be used in text, macros, equations (if it is numeric), and accessed from add-ons.
It may also be viewed directly in the AuxData page of the Data Set Information dialog.

Data Set Auxiliary Data Examples. The following auxiliary data contain flow field infor-
mation that might be found in output from a computational fluid-dynamics simulation.

DATASETAUXDATA MachNo = "1.2"
DATASETAUXDATA Alpha = "5"
DATASETAUXDATA RefTemperature = "250"
DATASETAUXDATA RefPressure = "101325"
DATASETAUXDATA Configuration = "A2 No. 3"
DATASETAUXDATA Date = "August 5, 2003"
DATASETAUXDATA Region = "NE Quadrant of Sector 47"

You may then use the numerical values in equations to modify the variables like this:

{P} = {P_non_dim} * AuxDataSet:RefPressure

Configuration and Date may then be included in text on the plot. This makes it easier to auto-
mate your plotting tasks using layout files and/or macros.

27

ASCII Data File Records

Summary of Data File Records

The following table summarizes the records and parameters allowable in Tecplot data files.

TITLE=“datasettitle” FILE
HEADERVARIABLES=“vname1”,”vname2”, ...

ZONE T=“zonetitle”, I=imax, J=jmax, K=kmax, C=color,
ZONETYPE=ORDERED, DT=(datatypelist), DATA-
PACKING=datapacking, SOLUTIONTIME=time,
STRANDID=strandid,PARENTZONE=parentzone

ORDERED
ZONE

RECORD

 VARLOCATION=([varset]=varlocation, [varset]=var-
location), AUXDATA auxvar=“value”,
VARSHARELIST=([varset]=zzz,[varset]=zzz)
FACENEIGHBORMODE=faceneighbormode
FACENEIGHBORCONNECTLIST=faceneighborcon-
nections

--- DATA FOR ORDERED ZONE ---

28

ZONE T=“zonetitle”, N=numnodes, E=numelements,
C=color, ZONETYPE=feformat, DT=(datatypelist),
DATAPACKING=datapacking, NV=nodevariable,
CONNECTIVITYSHAREZONE=zzz, STRAN-
DID=strandid, SOLUTIONTIME=time, AUXDATA
auxvar=“value”, PARENTZONE=parentzone

FINITE-
ELEMENT
ZONE

RECORD

 VARLOCATION=([varset]=varlocation, [varset]=var-
location), VARSHARELIST=([varset]=zzz,[var-
set]=zzz)
FACENEIGHBORMODE=faceneighbormode
FACENEIGHBORCONNECTLIST=faceneighborcon-
nections

--- DATA FOR FINITE-ELEMENT ZONE ---

TEXT X=xorigin,Y=yorigin, Z=zorigin, THETA=thetaori-
gin,R=rorigin, F=font, CS=coordinatesys, HU=heigh-
tunits, AN=textanchor, C=color, A=angle, H=height,
S=scope, LS=linespacing, T=“text”, BX=boxtype,
BXM=boxmargin, BXF=boxfillcolor, BXO=boxcolor,
LT=linethickness, ZN=zone, CLIPPING=clipping,
MFC=macrofunction

GEOME-
TRY

X=xorigin,Y=yorigin, Z=zorigin, THETA=theta-
origin, R=rorigin, T=geomtype, CS=coordinate-
sys, C=color, L=linetype, DT=datatype,
PL=patternlength, LT=linethickness,
EP=numellipsepts, AST=arrowheadstyle,
AAT=arrowheadattach, ASZ=arrowheadsize,
AAN=arrowheadangle, S=scope, F=geomfor-
mat, FC=geomfillcolor, ZN=zone, MFC=macro-
function, CLIPPING=clipping,
DRAWORDER=draworder

---DATA FOR GEOMETRY RECORD---

TEXT
RECORD

GEOME-
TRY

RECORD

DATASETAUX-
DATA

 auxvar1=“value1”, auxvar2=“value2”,
...

CUSTOMLA-
BELS

“label1”, “label2”, ...

VARAUXDATA v1 auxvar=“value”, v2 auxvar=“value”, ...

29

ASCII Data File Records

DATA
AUXILIARY
RECORD

CUSTOM
LABEL
RECORD

VARIABLE
AUXILIARY
RECORD

30

2 - 2 ASCII Data File Parameters
angle angle in degrees counter-clockwise from horizontal
arrowheadstyle PLAIN, HOLLOW, FILLED
arrowheadat-
tach

NONE, BEGINNING, END, BOTH

arrowheadsize size of arrowhead in frame units
arrowheadan-
gle

angle of arrowhead in degrees

auxvar name of auxiliary data variable
boxcolor fill color for text box use color options
boxfillcolor fill color for text in box as fraction of text height
boxmargin margin around text in box as fraction of text height
boxtype NOBOX, HOLLOW ,FILLED
clipping CLIPTOVIEWPORT, CLIPTOFRAME
color BLACK, RED, GREEN, BLUE, CYAN, YELLOW, PURPLE,

WHITE, CUST1, ..., CUST8
coordinatesys FRAME, GRID, GRID3D
datapacking BLOCK, POINT
datasettitle title of dataset
datatype SINGLE, DOUBLE
datatypelist SINGLE, DOUBLE, LONGINT, SHORTINT, BYTE, BIT
draworder AFTERDATA,BEFOREDATA

faceneighbor-
connections

Faceneighborconnectlist starts with the cell and cell-face
affected by the connection. It then contains neighboring cells
and zones depending on the FACENEIGHBORMODE.

faceneighbor-
mode

LOCALONETOONE, LOCALONETOMANY, GLOBALONE-
TOONE, GLOBALONETOMANY

feformat FELINESEG, FETRIANGLE, FEQUADRILATERAL,
FETETRAHEDRON, FEBRICK

font HELV, HELV-BOLD, TIMES, TIMES-ITALIC, TIMES-
BOLD, TIMES-ITALIC-BOLD, COURIER, COURIER-
BOLD, GREEK, MATH, USER-DEF

geomfillcolor fill color for geomtry use color options

31

ASCII Data File Parameters

geomformat POINT, BLOCK
geomtype LINE, SQUARE, RECTANGLE, CIRCLE, ELLIPSE
height text height in frame units
heightunits In FRAME coordinatesys either FRAME or POINT; in GRID

coordinatesys either GRID or FRAME
imax, jmax,
kmax

number of points in the I- J- or K-direction

labelN string for value of N when using custom labels
linespacing line spacing for multiple-line text
linethickness Thickness of text box or geometry outline
linetype SOLID, DASHED, DASHDOT, DOTTED, LONGDASH,

DASHDOTDOT

macrofunction macro function command
nodevariable number of the variable representing the “Node” value
numelements number of elements in finite-element zone
numellipsepts number of points used to approximate circles or ellipses
numnodes number of nodes in finite-element zone
orderedformat BLOCK, POINT
parentzone Ones-based parent zone number within the dataset. A zone

may not specify itself as its parent.
patternlength pattern length for linetype
rorigin r origin of the object in coordinatesys units, Polar plots only
scope GLOBAL, LOCAL
strandid integer value associating the zone with a given strand
text alphanumeric text string
textanchor LEFT, CENTER, RIGHT, MIDLEFT, MIDCENTER, MIDRIGHT, HEAD-

LEFT, HEADCENTER, HEADRIGHT
thetaorigin theta origin of the object in coordinatesys units, Polar plots

only
time floating point time value for the zone
varlocation NODAL, CELLCENTERED
varset list of variables to use

32

2 - 3 Ordered Data
For ordered data, the numerical values in the zone data must be in either POINT or BLOCK format,
specified by the DATAPACKING parameter.

2- 3.1 I-Ordered Data
I-ordered data has only one index, the I-index. This type of data is typically used for XY-plots, scat-
ter plots, and irregular (random) data for triangulation or for interpolation into an IJ-or IJK-ordered
zone within Tecplot.

In I-ordered data, the I-index varies from one to IMax. The total number of data points is IMax. For
zones with only nodal variables, the total number of values in the zone data is IMax*N (where N is
the number of variables). For a mixture of nodal and cell-centered variables, the number of values
in the zone data is IMax*Nn+(IMax-1)*Nc, where Nn is the number of nodal variables and Nc is
the number of cell-centered variables. For data in POINT format, IMax is calculated by Tecplot
from the zone data if it is not explicitly set by the zone control line (using the I-parameter).

I-Ordered Data in POINT Format Example. A simple example of I-ordered data in
POINT format is listed below. There are two variables (X, Y) and five data points. In this example,

vN number of the Nth variable
xorigin, yori-
gin

x or y origin of the object in coordinatesys units

zorigin z origin of object (always in GRID units)
zone zone number to which this item is assigned (0=all)
zonetitle title of zone
zzz The source zone for shared variables. If omitted, the vari-

ables are shared from the previous zone

33

Ordered Data

each row of data corresponds to a data point and each column to a variable. This data set is plotted
in Figure 2-4; each data point is labeled with its I-index.

1 2 3 4 5 6 7 8X
0

10

20

30

40

50

Y

1
2

3

4

5

Figure 2-4. An I-ordered data set.

VARIABLES = "X","Y"
ZONE I=5, DATAPACKING=POINT
2 4
3 9
5 25
6 36
7 49

For this data try omitting the VARIABLES and ZONE lines, leaving two columns of information. In
this case, Tecplot would count the columns to determine the number of variables, count rows to
determine I-dimension, and label the variables V1 and V2.

FORTRAN Code Example to Generate I-Ordered Data in POINT Format.
The following sample FORTRAN code shows how to create I-ordered data in POINT format:

 INTEGER VAR
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=POINT, I=´, IMAX
 DO 1 I=1,IMAX
 DO 1 VAR=1,NUMVAR
1 WRITE (*,*) ARRAY(VAR,I)

34

I-Ordered Data in BLOCK Format Example. The data from Section “I-Ordered Data
in POINT Format Example” on page 32 is shown below in BLOCK format. In this example, each
column of zone data corresponds to a data point; each row to a variable.

VARIABLES = "X", "Y"
ZONE I=5, DATAPACKING=BLOCK
2 3 5 6 7
4 9 25 36 49

In BLOCK format all IMax values of each variable are listed, one variable at a time.

FORTRAN Code to Generate I-Ordered Data in BLOCK Format Example.
The following sample FORTRAN code shows how to create I-ordered data in BLOCK format:

 INTEGER VAR
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX
 DO 1 VAR=1,NUMVAR
 DO 1 I=1,IMAX
1 WRITE (*,*) ARRAY(VAR,I)

Multi-Zone XY Line Plot Example. The two tables below show the values of pressure
and temperature measured at four locations on some object at two different times. The four loca-
tions are different for each time measurement.

Time = 0.0 seconds:
Position Temperature Pressure
71.30 563.7 101362.5
86.70 556.7 101349.6
103.1 540.8 101345.4
124.4 449.2 101345.2
Figure 2-5.

Time = 0.1 seconds:
Position Temperature Pressure
71.31 564.9 101362.1
84.42 553.1 101348.9
103.1 540.5 101344.0
124.8 458.5 101342.2
Fi 2 5

For this case, we want to set up two zones in the data file, one for each time value. Each zone has
three variables (Position, Temperature, and Pressure) and four data points (one for each
location). This means that IMax=4 for each zone. We include a text record (discussed in Section

35

Ordered Data

“Text Record”) to add a title to the plot. A data file in POINT format is given below. The plot
shown in Figure 2-6 can be produced from this file.

80 90 100 110 120
Position

450

460

470

480

490

500

510

520

530

540

550

560

T
em

pe
ra

tu
re

101345

101350

101355

101360

P
re

ss
ur

e

Temperature (0.0 seconds)
Pressure (0.0 seconds)
Temperature (0.1 seconds)
Pressure (0.1 seconds)

SAMPLE CASE

Figure 2-6. A multi-zone XY Line plot.

TITLE = "Example: Multi-Zone XY Line Plot"
VARIABLES = "Position", "Temperature", "Pressure"
ZONE T="0.0 seconds", I=4
71.30 563.7 101362.5
86.70 556.7 101349.6
103.1 540.8 101345.4
124.4 449.2 101345.2
ZONE T="0.1 seconds", I=4
71.31 564.9 101362.1
84.42 553.1 101348.9
103.1 540.5 101344.0
124.8 458.5 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE CASE"

A data file in BLOCK format is shown below. All of the values for the first variable (Position) at
each data point are listed first, then all of the values for the second variable (Temperature) at
each data point, and so forth.

TITLE = "Example: Multi-Zone XY Line Plot"
VARIABLES = "Position", "Temperature", "Pressure"

36

ZONE DATAPACKING=BLOCK, T="0.0 seconds", I=4
71.30 86.70 103.1 124.4
563.7 556.7 540.8 449.2
101362.5 101349.6 101345.4 101345.2
ZONE DATAPACKING=BLOCK, T="0.1 seconds", I=4
71.31 84.42 103.1 124.8
564.9 553.1 540.5 458.5
101362.1 101348.9 101344.0 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE CASE"

A more compact data file for this example is in the point format shown below. Tecplot determines
the number of variables from the number of values in the first line of data under the first zone. The
variables and zones are assigned default names.

ZONE
71.30 563.7 101362.5
86.70 556.7 101349.6 103.1 540.8 101345.4 124.4 449.2 101345.2
ZONE
71.31 564.9 101362.1 84.42 553.1 101348.9 103.1 540.5 101344.0
124.8 458.5 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE CASE"

Multi-Zone XY Line Plot with Variable Sharing Example. If the data from the sec-
tion above was taken at the same position for both times, variable sharing could reduce memory
usage and file size. That file appears as:

TITLE = "Example: Multi-Zone XY Line Plot with Variable Sharing"
VARIABLES = "Position", "Temperature", "Pressure"
ZONE T="0.0 seconds", I=4
71.30 563.7 101362.5
86.70 556.7 101349.6
103.1 540.8 101345.4
124.4 449.2 101345.2
ZONE T="0.1 seconds", I=4, VARSHARELIST=([1]=1)
564.9 101362.1
553.1 101348.9
540.5 101344.0
458.5 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE VARIABLE
SHARING CASE"

37

Ordered Data

2- 3.2 IJ-Ordered Data
IJ-ordered data has two indices: I and J. IJ-ordered data is typically used for 2D and 3D surface
mesh, contour, vector, and shade plots, but it can also be used to plot families of lines in XY-plots.
Refer to the Tecplot 360 User’s Manual for more information on data structure. In IJ-ordered data,
the I-index varies from 1 to IMax, and the J-index varies from one to JMax. The total number of
data points (nodes) is IMax*JMax. For zones with only nodal variables, the total number of
numerical values in the zone data is IMax*JMax*N (where N is the number of variables). For a
mixture of nodal and cell-centered variables, the number of values in the zone data is
IMax*JMax*Nn+(IMax-1)*(JMax-1)*Nc, where Nn is the number of nodal variables and Nc is the
number of cell-centered variables. Both IMax and JMax must be specified in the zone control line
(with the I and J parameters). The I- and J-indices should not be confused with the X- and Y-
coordinates—on occasions the two may coincide, but this is not the typical case.

The I-index varies the fastest. That is, when you write programs to print IJ-ordered data, the I-index
is the inner loop and the J-index is the outer loop. Note the similarity between I-ordered data and IJ-
ordered data with JMax=1.

IJ-Ordered Data in POINT Format Example. An example of IJ-ordered data in
POINT format is listed below.

0 2 4 6 8
X

0

1

2

3

4

5

6

7

8

9

Y

1,1

2,1

1,2

2,2

1,3
2,3

Figure 2-7. An IJ-ordered data set.

There are four variables (X, Y, Temperature, Pressure) and six

data points. In this example, each row of data corresponds to a data point; each column to a vari-
able. The first two lines are for J=1, the next two for J=2, the last two for J=3. The first, third, and
fifth lines are for I=1; the second, fourth, and sixth lines are for I=2. This data is plotted in Figure
2-7; each data point is labeled with its IJ-index.

38

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=2, J=3, DATAPACKING=POINT
3 0 0 50
7 2 0 43
2 4 1 42
6 6 0 37
1 8 1 30
5 9 1 21

FORTRAN Code to Generate IJ-Ordered Data in POINT Format Example.
The following sample FORTRAN code shows how to create IJ-ordered data in POINT format:

WRITE (*,*) ´VARIABLES = "X", "Y", "Temperature", "Pressure"’
WRITE (*,*) ´ZONE I=’, IMAX,’, J=’, JMAX,’,’DATAPACKING=POINT’
 DO 1 J=1,JMAX
 DO 1 I=1, IMAX
1 WRITE (*,*) X(I,J), Y(I,J), T(I,J), P(I,J)

IJ-Ordered Data Set in BLOCK Format Example. The same data set as in Section ,
“IJ-Ordered Data in POINT Format Example,” is shown in BLOCK format below. In this example,
each column of data corresponds to a data point; each row to a variable.

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=2, J=3, DATAPACKING=BLOCK
3 7 2 6 1 5
0 2 4 6 8 9
0 0 1 0 1 1
50 43 42 37 30 21

In BLOCK format, all IMax*JMax values of each variable are listed, one variable at a time. Within
each variable block, all the values of a variable at each data point are listed.

FORTRAN Code to Generate IJ-Ordered Data in BLOCK Format Example.
The following sample FORTRAN code shows how to create IJ-ordered data in BLOCK format:

 INTEGER VAR
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX, ´, J=´, JMAX
 DO 1 VAR=1,NUMVAR

39

Ordered Data

 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
1 WRITE (*,*) ARRAY(VAR,I,J)

IJ-Ordered Data with Cell-Centered Data. An example of IJ-ordered data with cell-
centered variables might include four variables (X, Y, Temperature, Pressure), nine data
points, and four cells where Temperature and Pressure are cell-centered.

1,1

2,1

1,2

2,2

1,1

2,1

3,1

1,2

2,2

3,21,3

2,3

3,3

X

Y

2 4 6 8 10 12

0

2

4

6

8

10

Figure 2-8. An IJ-ordered data set with cell-centered
data.

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=3, J=3, DATAPACKING=BLOCK, VARLOCATION=(3=CELLCENTERED,
4=CELLCENTERED)
3 7 11 2 6 10 1 5 9
0 2 3 4 6 8 8 9 10
0 2 1 3
45 60 35 70

The nodal variables of X and Y are specified at all nine nodes, and the values of cell-centered vari-
ables are specified at the four cells [(IMax-1)*(JMax-1)]. Zones with cell-centered data
must have DATAPACKING=BLOCK.

40

Two-Dimensional Field Plots
A 2D field plot typically uses an IJ-ordered or finite-element surface data set. However, any data
structure can be viewed as a 2D field plot, by simply selecting “2D Cartesian” from the plot-type
menu in the Sidebar.

 An IJ-ordered data file has the basic structure shown below:

TITLE = "Example: Multi-Zone 2D Plot"
VARIABLES = "X", "Y", "Press", "Temp", "Vel"
ZONE T="BIG ZONE", I=3, J=3, DATAPACKING=POINT
1.0 2.0 100.0 50.0 1.0
1.0 3.0 95.0 50.0 1.00
1.0 4.0 90.0 50.0 0.90
2.0 2.0 91.0 40.0 0.90
2.0 3.0 85.0 40.0 0.90
2.0 4.0 80.0 40.0 0.80
3.0 2.0 89.0 35.0 0.85
3.0 3.0 83.0 35.0 0.80
3.0 4.0 79.0 35.0 0.80
ZONE T="SMALL ZONE", I=3, J=2, DATAPACKING=POINT
3.0 2.0 89.0 35.0 0.85
3.5 2.0 80.0 35.0 0.85
4.0 2.0 78.0 35.0 0.80
3.0 3.0 83.0 35.0 0.80
3.5 3.0 80.0 35.0 0.85
4.0 3.0 77.0 33.0 0.78

This data file has two zones and five variables, and is included with Tecplot as the file exam-
ples/dat/multzn2d.dat. The first zone has nine data points arranged in a three-by-three
grid (I=3, J=3). Each row of each zone represents one data point, where each column corresponds
to the value of each variable for a given data point, i.e. X = 1.0, Y = 2.0, Press = 100.0, Temp =
50..0, and Vel - 1.0 for data point 1 in zone one (Big Zone).

41

Ordered Data

Similarly, the second zone (Small Zone) has six data points in a three-by-two mesh (I=3, J=2).
Reading this data file yields the mesh plot shown in Figure 2-9. A 2D finite-element data file is
shown below (included in your Tecplot distribution as examples/dat/2dfed.dat):.

X

Y

1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

Figure 2-9. A 2D field plot.

TITLE = "Example: 2D Finite-Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE N=8, E=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
0.0 1.0 75.0 1.6
1.0 1.0 100.0 1.5
3.0 1.0 300.0 2.0
0.0 0.0 50.0 1.0
1.0 0.0 100.0 1.4
3.0 0.0 200.0 2.2
4.0 0.0 400.0 3.0
2.0 2.0 280.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

The above finite-element data file has eight nodes (the first 8 rows of the zone) and four elements
(the last four rows of the zone). The each row in the node matrix represents a given node. Each col-
umn in the row matrix corresponds to the value of each variable in at a given node. The order of the
variables definition correlates to the order the variables are named in the data set, i.e. for node 1, X
= 0.0, Y=1.0, P = 75.0 and T = 1.6.

42

The element matrix defines the connectivity of the nodes, i.e. element one is composed of nodes
1,2,5 and 4. The data set yields the simple mesh plot shown in Figure 2-10.

X

Y

1 2 3 4

0.5

1

1.5

2

Figure 2-10. A 2D mesh plot of a finite-element data set.

Please refer to Data Structure in the Tecplot 360 User’s Manual for information on ordered and FE
data sets and Chapter 2 “ASCII Data” for information on formatting your data sets as ordered or
FE.

Three-Dimensional Field Plots
Creating a 3D field plot from a 2D plot is usually as simple as selecting 3D Cartesian from the plot
type dropdown on the sidebar.

3D Cartesian is the default plot type for 3D volume (IJK-ordered and FE-volume) data sets

IJK-ordered data sets have the general form shown below:

TITLE = "Example: Simple 3D Volume Data"
 VARIABLES = "X", "Y", "Z", "Density"
 ZONE I=3, J=4, K=3, DATAPACKING=POINT
 1.0 2.0 1.1 2.21
 2.0 2.1 1.2 5.05
 3.0 2.2 1.1 7.16
 1.0 3.0 1.2 3.66
...

43

Ordered Data

The complete ASCII data file is included with Tecplot as simp3dpt.dat (POINT format), and
in block format as simp3dbk.dat. When you read either of these files into Tecplot, you immedi-
ately get the plot shown in Figure 2-11.

1

1.5

2

2.5

3

3.5

4

Z

1

1.5

2

2.5

3

3.5

4

X

2

2.5

3

3.5

4

4.5

5

5.5

6

Y

X Y

Z

Figure 2-11. Plot of a 3D volume.

Finite-element volume data sets, like FE-surface data sets, consist of two separate lists—the value
list and the connectivity list. A portion of a finite-element volume data file is shown below:

The full data file, consisting of a single FE-Brick zone, is included with Tecplot as febrfep.dat
(POINT format), and in BLOCK format as febrfeb.dat.

TITLE = "Example: FE-Volume Brick Data"
 VARIABLES = "X", "Y", "Z", "Temperature"
 ZONE N=14, E=5, DATAPACKING=POINT, ZONETYPE=FEBRICK
 0.0 0.0 0.0 9.5
 1.0 1.0 0.0 14.5
 1.0 0.0 0.0 15.0
 1.0 1.0 1.0 16.0
...
 1 1 1 1 2 4 5 3
 2 4 5 3 7 10 11 8
 4 4 5 5 10 13 14 11
 4 4 4 4 9 12 13 10
 2 2 4 4 7 6 9 10

44

The above finite-element data file has fourteen nodes (the first four are displayed) and five ele-
ments (the last five rows of the zone). The each row in the node matrix represents a given node.
Each column in the row matrix corresponds to the value of each variable in at a given node. The
order of the variables definition correlates to the order the variables are names in the data set, i.e.
for node 1, X = 0.0, Y=0.0, Z=0.0 and Temperature = 9.5.

The element matrix defines the connectivity of the nodes, i.e. element one is composed of nodes
1,1,1,1,2,4,5,3. Node 1 is repeated several times because the FEBRICK zone type requires eight
nodes for each element. If 8 unique nodes are not present in physical space, one node is repeated to
fulfill the requirement.

When you read either of these files into Tecplot, you obtain the plot shown in Figure 2-12.

0

0.5

1

1.5

2

Z
0

0.5

1

1.5

2

X

0

0.5

1

1.5

2

Y

X Y

Z

Figure 2-12. A 3D field plot of a finite-
element volume data set.

2- 3.3 IJK-Ordered Data
IJK-ordered data has three indices: I, J, and K. This type of data is typically used for 3D volume
plots, although planes of the data can be used for 2D and 3D surface plots. See Chapter Ordered
Data in the Tecplot 360 User’s Manual for more information.

In IJK-ordered data, the I-index varies from 1 to IMax, the J-index varies from one to JMax, and the
K-index varies from one to KMax. The total number of data points (nodes) is IMax*JMax*KMax.
For zones with only nodal variables the total number of values in the zone data is
IMax*JMax*KMax*N, where N is the number of variables. For a mixture of nodal and cell-cen-
tered variables, the number of values in the zone data is IMax*JMax*KMax*Nn+(IMax-1)*(JMax-

45

Ordered Data

1)*(KMax-1)*Nc, where Nn is the number of nodal variables and Nc is the number of cell-centered
variables. The three indices, IMax, JMax, and KMax, must be specified in the zone control line
using the I-, J-, and K-parameters.

The I-index varies the fastest; the J-index the next fastest; the K-index the slowest. If you write a
program to print IJK-ordered data, the I-index is the inner loop, the K-index is the outer loop, and
the J-index is the loop in between. Note the similarity between IJ-ordered data and IJK-ordered data
with KMax=1.

IJK-Ordered Data in POINT Format Example. An example of IJK-ordered data in
POINT format is listed below. There are four variables (X, Y, Z, Temperature) and twelve data
points. Each row of data corresponds to a data point; each column to a variable. This data is plotted
in Figure 2-13; each data point is labeled with its IJK-index.

0

5

10

Z

0

2

4

6

X

0
5

Y

3,2,1

3,2,2

2,2,1

3,1,1

2,2,2

3,1,2

1,2,1
2,1,1

1,2,2
2,1,2

1,1,1

1,1,2

X

Y

Z

Figure 2-13. An IJK-ordered data set.

VARIABLES = "X" "Y" "Z" "Temp"
ZONE I=3, J=2, K=2,DATAPACKING=POINT

 0 0 0 0

46

 3 0 1 5
 6 0 3 10
 0 6 3 10
 3 6 4 41
 6 6 6 72
 0 0 8 0
 3 0 9 29
 6 0 11 66
 0 6 11 66
 3 6 12 130
 6 6 14 169

BLOCK Format of the Same Data. The same data set as Section “IJK-Ordered Data in
POINT Format Example” on page 45, this time in BLOCK format, is shown below. For this exam-
ple, each column of data corresponds to a data point; each row to a variable.

VARIABLES = "X" "Y" "Z" "Temp"
ZONE I=3, J=2, K=2, DATAPACKING=BLOCK
 0 3 6 0 3 6 0 3 6 0 3 6
 0 0 0 6 6 6 0 0 0 6 6 6
 0 1 3 3 4 6 8 9 11 11 12 14
 0 5 10 10 41 72 0 29 66 66 130 169

FORTRAN Code to Generate an IJK-Ordered Zone in POINT Format
Example. The following sample FORTRAN code shows how to create an IJK-ordered zone in
POINT format:

 WRITE (*,*) 'VARIABLES = "X", "Y", "Z", "Temp"'
 WRITE (*,*) 'ZONE I=',IMAX,' J=',JMAX,' K=',KMAX,'
DATAPACKING=POINT'
DO 1 K=1,KMAX
 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
1 WRITE (*,*) X(I,J,K), Y(I,J,K), Z(I,J,K), Temp(I,J,K)

In BLOCK format, all IMax*JMax*KMax values of each variable are listed, one variable at a time.
Within each variable block, all the values of the variable at each data point are listed.

47

Ordered Data

FORTRAN Code to Generate IJK-Ordered Data in BLOCK Format Exam-
ple. The following sample FORTRAN code shows how to create an IJK-ordered zone in BLOCK
format:

 INTEGER VAR
 .
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX, ´, J=´, JMAX, ´,
K=´, KMAX
 DO 1 VAR=1,NUMVAR
 DO 1 K=1,KMAX
 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
1 WRITE (*,*) ARRAY(VAR,I,J,K)

One Variable Data Files
For ordered data, it is possible to read in a data file that has only one variable. Tecplot then creates
the other required variables. That is, if your data is I-ordered, a variable containing the I-index val-
ues is created, numbered V1, and called I. For IJ-ordered data, two variables, numbered V1 and V2
and called I and J, are created to contain the I- and J-index values. For IJK-ordered data, three
variables I, J, and K are created and numbered V1, V2, and V3. The variable in the data file is
numbered with the next available variable number, that is, V2 for I-ordered data, V3 for IJ-ordered
data, and V4 for IJK-ordered data. The created variables are the default X-, Y-, and Z-variables.
The data type for the created variables is determined according to the following table:

< 256 BYTE

<32,766 SHORTINT

>=32,766 SINGLE

For example, if you have an ASCII file with 256 by 384 numbers representing intensities of a ras-
terized image, you could make a data file similar to the following:

VARIABLES = "TEMPERATURE"
 ZONE I=256, J=384
List all 98,304 values of temperature here.

Maximum of IMax, JMax, and KMax Data Type

48

Read the data file into Tecplot. Two new variables of type SHORTINT are created and used as the
default X- and Y-coordinates. These variables are the I- and J-index values; they are named I and
J. You can now create any type of 2D plot with the data.

If you have finite-element data, Tecplot will not create any new variables for you. If you need to
add variables to finite-element data, you can do so using the Data menu.

2 - 4 Finite-Element Data
For finite-element data, the zone types, specified in the ZONETYPE parameter, may be
FELINESEG, FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON, or FEBRICK. For any
of these DATAPACKING may be POINT or BLOCK.

The number of nodes (data points) is given by the N=numnodes parameter, and the number of ele-
ments is given by the E=numelements parameter (this is also the total length of the connectivity
list).

Zone data is divided into two logical sections. It has no markers, but you may place blank lines
between the sections to distinguish them. The first section, the node (and sometimes element) data,
lists the values of the variables at the data points (or nodes) or cell-centers (elements) as if they
were I-ordered (one-dimensional) zone data. The second section, the connectivity list, defines how
the nodes are connected to form elements. There must be numelements lines in the second section;
each line defines one element. The number of nodes per line in the connectivity list depends on the
element type specified in the zone control line (ZONETYPE parameter). For example, ZON-
TYPE=FETRIANGLE has three numbers per line in the connectivity list. If nodes 5, 7, and 8 are
connected, one line reads: 5 7 8.

In the descriptions below, NE is the Eth node at a vertex of an element. The subscripts of NE refer to
the element number. For example, N23 represents the second node of the third element.

For the line segment element type, each line of the connectivity list contains two node numbers that
define a linear element:

N1M, N2M

For the triangle element type, each line of the connectivity list contains three node numbers that
define a triangular element:

N1M, N2M, N3M

For the quadrilateral element type, each line of the connectivity list contains four node numbers that
define a quadrilateral element:

49

Finite-Element Data

N1M, N2M, N3M, N4M

If you need to mix quadrilateral and triangle elements, either create two zones or use the quadrilat-
eral element type with node numbers (N4M=N3M) repeated to form triangles.

Zones created from the quadrilateral and triangle element types are called FE-surface zones.

For the tetrahedron element type, each line of the second section of the zone data contains four
node numbers that define a tetrahedral element:

N1M N2M N3M N4M

For the brick element type, each line of the second section contains eight node numbers that define
a ‘‘brick-like” element:

N1M N2M N3M N4M N5M N6M N7M N8M

Tecplot divides the eight nodes into two groups of four; nodes N1M, N2M, N3M, and N4M make up
the first group, and N5M, N6M, N7M, and N8M make up the second group. Each node is connected to
two nodes within its group and the node in the corresponding position in the other group. For exam-
ple, N1M is connected to N2M and N4M in its own group, and to N5M in the second group. To create
elements with fewer than eight nodes, repeat nodes as necessary, keeping in mind the basic brick
connectivity just described. Figure 2-14 shows the basic brick connectivity. For example, to create
a tetrahedron, you can set N3M=N4M and N5M=N6M
=N7M=N8M. To create a quadrilateral-based pyramid, you can set N5M=N6M=N7M=N8M. If you need
a mixture of bricks and tetrahedra, either use two zones or use the brick element type with node
numbers repeated so that tetrahedra result.

n1 n2

n3n4

n5

n8 n7

n6

Figure 2-14. Basic brick connectivity.

Zones created from the brick and tetrahedron element types are called finite-element volume zones.

50

If CONNECTIVITYSHAREZONE=nnn is in the zone control line, the connectivity list is shared
from zone nnn. In this case, no connectivity list is given, just the node (and possibly element) data.
If nnn is greater than or equal to the current zone number, Tecplot generates an error message.

Triangle Data in POINT Format Example
An example of triangle element type finite-element data with POINT datapacking is listed below.
There are two variables (X, Y) and five data points. In this example, each row of the data section
corresponds to a node and each column to a variable. Each row of the connectivity list corresponds
to a triangular element and each column specifies a node number. This data set is plotted in Figure
2-15. Each data point is labeled with its node number.

0 1 2 3 4 5
X

1

2

3

4

5

Y

1

2

3

4

5

Figure 2-15. A finite-element triangle data set.

VARIABLES = "X", "Y"
ZONE N=5, E=3, DATAPACKING=POINT, ZONETYPE=FETRIANGLE
1.0 1.0
2.0 3.0
2.5 1.0
3.5 5.0
4.0 1.0

1 2 3
3 2 4
3 5 4

51

Finite-Element Data

BLOCK Format of the Same Data. The same data in BLOCK format is shown below. In
this example, each column of the data section corresponds to a node and each row to a variable. As
above, each row of the connectivity list corresponds to a triangular element and each column spec-
ifies a node number.

VARIABLES = "X", "Y"
 ZONE N=5, E=3, DATAPACKING=BLOCK, ZONETYPE=FETRIANGLE
 1.0 2.0 2.5 3.5 4.0
 1.0 3.0 1.0 5.0 1.0
 1 2 3
 3 2 4
 3 5 4

FORTRAN Code Generating Triangle Data in POINT Format Example
The following sample FORTRAN code shows how to create triangle element type finite-element
data in POINT format:

 INTEGER VAR
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=POINT, ZONETYPE=FETRIANGLE,N=´,
 & NNODES,´,E=´,NELEM
 DO 1 N=1,NNODES
 DO 1 VAR=1,NUMVAR
1 WRITE(*,*) VARRAY(VAR,N)

 DO 2 M=1,NELEM
 DO 2 L=1,3
2 WRITE (*,*) NDCNCT(M,L)

FORTRAN Code Generating Triangle Data in BLOCK Format Example
This FORTRAN code creates triangle element type finite-element data in BLOCK format:

 INTEGER VAR
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK,
ZONETYPE=FETRIANGLE,N=´,NNODES,

52

 &´,E=´,NELEM
 DO 1 VAR=1,NUMVAR
 DO 1 N=1,NNODES
1 WRITE(*,*) VARRAY(VAR,N)
 DO 2 M=1,NELEM
 DO 2 L=1,3
2 WRITE (*,*) NDCNCT(M,L)

Finite-Element Zone Node Variable Parameters Example
The node variable parameter allows setting of the connectivity to match the value of the selected
node variable. In the example below, the files appear to be identical in Tecplot, although the
connectivity list has changed to reflect the values of the node variable node order. Notice that the
index value of the nodes is not changed by the node variable value.

The original data set:

TITLE = "Data with original node ordering"
VARIABLES = "X"
"Y"
ZONE T="Triangulation"
 N=6, E=5,DATPACKING=POINT, ZONETYPE=FETRIANGLE
DT=(SINGLE SINGLE)
 2.00E+000 3.00E+000
 2.20E+000 3.10E+000
 3.10E+000 4.20E+000
 2.80E+000 3.50E+000
 2.40E+000 2.10E+000
 4.30E+000 3.20E+000
 1 2 5
 6 4 3
 5 4 6
 2 3 4
 5 2 4

The data set with the nodes re-ordered for connectivity:

TITLE = "Data with modified node ordering"
VARIABLES = "X"
"Y" "Node-Order"

53

Finite-Element Data

ZONE T="Triangulation"
 N=6, NV = 3, E=5,DATAPACKING=POINT, ZONETYPE=FETRIANGLE
DT=(SINGLE SINGLE)
 2.00E+000 3.00E+000 5
 2.20E+000 3.10E+000 4
 3.10E+000 4.20E+000 1
 2.80E+000 3.50E+000 2
 2.40E+000 2.10E+000 6
 4.30E+000 3.20E+000 3
 5 4 6
 3 2 1
 6 2 3
 4 1 2
 6 4 2

2- 4.1 Variable and Connectivity List Sharing
The VARSHARELIST in the ZONE record allows you to share variables from specified previous
zones. The CONNECTIVITYSHAREZONE parameter in the ZONE record allows you to share the
connectivity list from a specified previous zone. The following is an example to illustrate these fea-
tures.

The table below shows Cartesian coordinates X and Y of six locations, and the pressure measured
there at three different times (P1, P2, P3). The XY locations have been arranged into finite-ele-
ments.

X Y P1 P2 P3

-1.0 0.0 100 110 120
0.0 0.0 125 135 145
1.0 0.0 150 160 180
-0.5 0.8 150 165 175
0.5 0.8 175 185 195
0.0 1.6 200 200 200

For this case, we want to set up three zones in the data file, one for each time measurement. Each
zone has three variables: X, Y, and P. The zones are of the triangle element type, meaning that three
nodes must be used to define each element. One way to set up this data file would be to list the

54

complete set of values for X, Y, and P for each zone. Since the XY-coordinates are exactly the same
for all three zones, a more compact data file can be made by using the VARSHARELIST. In the data
file given below, the second and third zones have variable sharing lists that share the values of the
X- and Y-variables and the connectivity list from the first zone. As a result, the only values listed
for the second and third zones are the pressure variable values. Note that the data could easily have
been organized in a single zone with five variables. Since blank lines are ignored in the data file,
you can embed them to improve readability. A plot of the data is shown in Figure 2-16.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

Mesh

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

188.75
177.5
166.25
155
143.75
132.5
121.25
110
98.75
87.5
76.25
65
53.75
42.5
31.25

Pressure 3

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

188.75
177.5
166.25
155
143.75
132.5
121.25
110
98.75
87.5
76.25
65
53.75
42.5
31.25

Pressure 2

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

188.75
177.5
166.25
155
143.75
132.5
121.25
110
98.75
87.5
76.25
65
53.75
42.5
31.25

Pressure 1

Figure 2-16. A plot of finite-element zones.

TITLE = "Example: Variable and Connectivity List Sharing"
VARIABLES = "X", "Y", "P"
ZONE T="P_1", DATAPACKING=POINT, N=6, E=4, ZONETYPE=FETRIANGLE
-1.0 0.0 100
0.0 0.0 125
1.0 0.0 150
-0.5 0.8 150
0.5 0.8 175
0.0 1.6 200

1 2 4

55

Finite-Element Data

2 5 4
3 5 2
5 6 4
ZONE T="P_2", DATAPACKING=POINT, N=6, E=4, ZONETYPE=FETRIANGLE,
VARSHARELIST = ([1, 2]=1), CONNECTIVITYSHAREZONE = 1
110 135 160 165 185 200

ZONE T="P_3", DATAPACKING=POINT, N=6, E=4, ZONETYPE=FETRIANGLE,
VARSHARELIST = ([1, 2]=1), CONNECTIVITYSHAREZONE = 1
120 145 180 175 195 200

2- 4.2 ASCII Data File Conversion to Binary
Although Tecplot can read and write ASCII or binary data files, binary data files are more compact
and are read into Tecplot much more quickly. Your Tecplot distribution includes Preplot, which
converts ASCII to binary data files. You can also use Preplot to debug ASCII data files Tecplot
cannot read.

Preplot Options
To use Preplot, type the following command from the UNIX shell prompt, from a DOS prompt, or
using the Run command in Windows:

preplot infile [outfile] [options]

where infile is the name of the ASCII data file, outfile is an optional name for the binary data file
created by Preplot, and options is a set of options from either the standard set of Preplot options or
from a special set of options for reading PLOT3D format files. If outfile is not specified, the binary
data file has the same base name as the infile with a .plt extension. You may use a minus sign (“-
”) in place of either the infile or outfile to specify standard input or standard output, respectively.

Any or all of -iset, -jset, and -kset can be set for each zone, but only one of each per zone.

For more Preplot command lines, see Appendix B.3, “Preplot.”

Preplot Examples
If you have an ASCII file named dset.dat, you can create a binary data file called dset.plt
with the following Preplot command:

preplot dset.dat dset.plt

56

By default, Preplot looks for files with the .dat extension, and creates binary files with the .plt
extension. Thus, either of the following commands is equivalent to the above command:

preplot dset
preplot dset.dat

Preplot checks the input ASCII data file for errors such as illegal format, numbers too small or too
large, the wrong number of values in a data block, and illegal finite-element node numbers. If Pre-
plot finds an error, it issues a message displaying the line and column where the error was first
noticed. This is only an indication of where the error was detected; the actual error may be in the
preceding columns or lines.

If Preplot encounters an error, you may want to set the debug option to get more information about
the events leading up to the error:

preplot dset.dat -d

You can set the flag to -d2, or -d3, or -d4, and so forth, to obtain even more detailed informa-
tion.

In the following Preplot command line, the number of points that are written to the binary data file
dset.plt is less than the number of points in the input file dset.dat:

preplot dset.dat -iset 3,6,34,2 -jset 3,1,21,1 -iset 4,4,44,5

For zone 3, Preplot outputs data points with I-index starting at 6 and ending at 34, skipping every
other one, and J-index starting at one and ending at 21. For zone 4, Preplot outputs data points with
the I-index starting at four, ending at 44, and skipping by five.

In the following Preplot command line, every other point in the I-, J-, and K-directions is written to
the binary data file:

preplot dset.dat -iset ,,,2 -jset ,,,2 -kset ,,,2

The zone, start, and end parameters are not specified, so all zones are used, starting with index 1,
and ending with the maximum index. The overall effect is to reduce the number of a data points by
a factor of about eight.

Preplot Conversion of the PLOT3D Format
PLOT3D is a graphics plotting package developed at NASA. Some numerical simulation packages
and other programs can create graphics in PLOT3D format. There are two paths by which you can
get files in PLOT3D format into Tecplot. This section describes the Preplot path; you can also use

57

Finite-Element Data

the PLOT3D Loader described in Section E - 13 “PLOT3D Data Loader” on page 654 in the
Tecplot 360 User’s Manual Plot3D Data Loader in the Tecplot 360 User’s Manual. The PLOT3D
Loader has more advanced capabilities than Preplot.

Preplot can read files in the PLOT3D format and convert them to Tecplot binary data files through
the use of special switches. You do not need to know about these switches unless you have data in
PLOT3D format.

PLOT3D files typically come in pairs consisting of a grid file (with extension .g) and a solution
file (with extension .q). Sometimes only the grid file is available. The grid itself may be either a
single grid, or a multigrid, and the data may be 1D, 2D, 3D-planar, or 3D-whole (equivalent to Tec-
plot’s 3D volume data). The PLOT3D files may be binary or ASCII. The PLOT3D-specific
switches to Preplot allow you to read PLOT3D files with virtually any combination of these
options.

The ilist, jlist, and klist are comma-separated lists of items of the form:

start[:end][:skip]]

where start is the number of the starting I-, J-, or K-plane, end is the number of ending I-, J-, or K-
plane, and skip is the skip factor between planes. If end is omitted, it defaults to the starting plane
(so if just start is specified, only that one plane is included). The skip defaults to one (every plane)
if omitted; a value of two includes every other plane, a value of three include every third plane, and
so on.

You must specify one of the flags -1d, -2d, -3dp, or -3dw. You may also specify only one of -
ip, -jp, or -kp and only one of -b or -f.

If the input PLOT3D file is 3D whole (-3dw) and none of the plane-extraction switches -ip, -jp,
or -kp is specified, the PLOT3D file is converted directly to an IJK-ordered zone (or multiple
zones if the file is multi-grid).

For example, in the following command line, Preplot reads from the PLOT3D files aero.g and
aero.q. The input is binary and 3D whole. The J-planes 2, 3, 4, 45, 46, and 47 are processed and
made into six IJ-ordered zones, in a binary data file named aero.plt:

preplot aero -plot3d -b -3dw -jp 2,3,4,45,46,47

In the following command line, the plane-extraction switches are omitted, so Preplot creates a sin-
gle IJK-ordered zone:

preplot aero -plot3d -b -3dw

58

The following command line reads an ASCII file airplane.g for which there is no correspond-
ing .q file; the data is 3D whole:

preplot airplane -plot3d -gridonly -3dw

The following command line reads a multi-grid, 3D planar, binary-FORTRAN pair of PLOT3D
files, multgrid.g and multgrid.q:

preplot multgrid -plot3d -m -f -3dp

2- 4.3 Finite-Element Data Sets
Creating a finite-element data set is generally more complicated than creating a similar-sized
ordered data set1. In addition to specifying all the data points, you must also specify the
connectivity list. Consider the data shown in Table 2 - 1.

You can create a POINT Tecplot data file for this data set as follows (a 2D mesh plot of this data set
is shown in Figure 2-17):

TITLE = "Example: 2D Finite-Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE N=8, E=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
0.0 1.0 100.0 1.6
1.0 1.0 150.0 1.5
3.0 1.0 300.0 2.0

1. Background information for FE data sets is provided in 2 - 2 “Finite-Element Data” on page 51 in the Tecplot 360
User’s Manual the Tecplot 360 User’s Manual - Finite Element Data.

Node X Y P T
A 0.0 1.0 100.0 1.6
B 1.0 1.0 150.0 1.5
C 3.0 1.0 300.0 2.0
D 0.0 0.0 50.0 1.0
E 1.0 0.0 100.0 1.4
F 3.0 0.0 200.0 2.2
G 4.0 0.0 400.0 3.0
H 2.0 2.0 280.0 1.9

Table 2 - 1: Finite Element Data

59

Finite-Element Data

0.0 0.0 50.0 1.0
1.0 0.0 100.0 1.4
3.0 0.0 200.0 2.2
4.0 0.0 400.0 3.0
2.0 2.0 280.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

The ZONE record describes completely the form and format of the data set: there are eight nodes,
indicated by the parameter N=8; four elements, indicated by the parameter E=4, and the elements
are all quadrilaterals, as indicated by the parameter ZONETYPE=FEQUADRILATERAL.

The same data file can be written more compactly in BLOCK format as follows:

TITLE = "Example: 2D Finite-Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE N=8, E=4, DATAPACKING=BLOCK, ZONETYPE=FEQUADRILATERAL
0.0 1.0 3.0 0.0 1.0 3.0 4.0 2.0
1.0 1.0 1.0 0.0 0.0 0.0 0.0 2.0
100.0 150.0 300.0 50.0 100.0 200.0 400.0 280.0
1.6 1.5 2.0 1.0 1.4 2.2 3.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

X

Y

1 2 3 4

0.5

1

1.5

2

D

A

GF

C

H

E

B

Figure 2-17. A mesh plot of 2D finite-element data.

60

In BLOCK format, all values for a single variable are written in a single block. The length of the
block is the number of data points in the zone. In POINT format, all variables for a single data point
are written in a block, with the length of the block equal to the number of variables.

You can change the connectivity list to obtain a different mesh for the same data points. In the
above example, substituting the following connectivity list yields the five-element mesh shown in
Figure 2-18. (You must also change the E parameter in the zone control line to specify five ele-
ments.)

(2D) ⏐ 5 Aug 1996 ⏐Example: 2D Finite-Element Data

0 1 2 3 4
X

0

0.5

1

1.5

2

Y

A

D

B

E

H

C

F G

(2D) ⏐ 5 Aug 1996 ⏐Example: 2D Finite-Element Data

Figure 2-18. Finite-element data of Figure 2-17 with different
connectivity list

1 2 4 4
4 2 3 5
5 3 6 6
6 7 3 3
3 2 8 8

FE surface data
Finite-element surface data specify node locations in three dimensions. Consider the data in Table
2-1. Locations are listed for eleven nodes, each having only the three spatial variables X, Y, and Z.
We would like to create an finite-element surface zone with this data set, where some of the ele-

The connectivity list is the same for both
POINT and BLOCK formats.

61

Finite-Element Data

ments are triangles and some are quadrilaterals. All the elements could be organized into one zone,
of element type Quadrilateral, but as an illustration of creating 3D surface data, create three zones:
one triangular, one quadrilateral, and one a mixture (using quadrilaterals with repeated nodes for
the triangles).

 0.0 0.0 1.0
 0.0 0.0 -2.0
 1.0 0.0 -2.0
 1.0 1.0 0.0
 1.0 1.0 -1.0
 1.0 -1.0 0.0
 1.0 -1.0 -1.0
-1.0 1.0 0.0
-1.0 1.0 -1.0
-1.0 -1.0 0.0
-1.0 -1.0 -1.0

A Tecplot data file for the data in Table 2-1 is shown below in POINT format and plotted in Figure
2-19:

TITLE = "Example: 3D FE-SURFACE ZONES"
VARIABLES = "X", "Y", "Z"
ZONE T="TRIANGLES", N=5, E=4, DATAPACKING=POINT, ZONETYPE=FETRIANGLE
0.0 0.0 1.0
-1.0 -1.0 0.0
-1.0 1.0 0.0
1.0 1.0 0.0
1.0 -1.0 0.0
1 2 3
1 3 4
1 4 5
1 5 2
ZONE T="PURE-QUADS", N=8, E=4, DATAPACKING=POINT,

ZONETYPE=FEQUADRILATERAL
-1.0 -1.0 0.0

 X Y Z

Table 2-1. Data set with eleven nodes and three variables.

62

-1.0 1.0 0.0
1.0 1.0 0.0
1.0 -1.0 0.0
-1.0 -1.0 -1.0
-1.0 1.0 -1.0
1.0 1.0 -1.0
1.0 -1.0 -1.0
1 5 6 2
2 6 7 3
3 7 8 4
4 8 5 1
ZONE T="MIXED", N=6, E=4, DATAPACKING=POINT,
ZONETYPE=FEQUADRILATERAL
-1.0 -1.0 -1.0
-1.0 1.0 -1.0
1.0 1.0 -1.0
1.0 -1.0 -1.0
0.0 0.0 -2.0
1.0 0.0 -2.0
1 5 2 2
2 5 6 3
3 4 6 6
4 1 5 6

-2

-1

0

1

Z

-1
0

1 X
-1 -0.5 0 0.5 1

Y

X Y

Z

Figure 2-19. Three-dimensional mesh plot of finite-
element surface data.

63

Finite-Element Data

FE Volume Data Files
Finite-element volume data in Tecplot is constructed from either tetrahedrons having four nodes or
bricks having eight nodes. Bricks are more flexible, because they can be used (through the use of
repeated nodes in the connectivity list) to construct elements with fewer than eight nodes and
combine those elements with bricks in a single zone. Tetrahedrons, on the other hand, are harder to
construct because care must be taken to ensure all faces in all of the tetrahedron are planar in
physical space.

Finite-Element Volume - Brick Data Set
As a simple example of finite-element volume brick data, consider the data in Table 2 - 2. The data
can be divided into five brick elements, each of which is defined by eight nodes.

0.0 0.0 0.0 9.5
1.0 1.0 0.0 14.5
1.0 0.0 0.0 15.0
1.0 1.0 1.0 16.0
1.0 0.0 1.0 15.5
2.0 2.0 0.0 17.0
2.0 1.0 0.0 17.0
2.0 0.0 0.0 17.5
2.0 2.0 1.0 18.5
2.0 1.0 1.0 20.0
2.0 0.0 1.0 17.5
2.0 2.0 2.0 18.0
2.0 1.0 2.0 17.5
2.0 0.0 2.0 16.5

In each element’s connectivity list, Tecplot draws connections from each node to three other nodes.
You can think of the first four nodes in the element as the “bottom” layer of the brick, and the sec-
ond four nodes as the “top.” Within the bottom or top layer, nodes are connected cyclically (1-2-3-
4-1; 5-6-7-8-5); the layers are connected by connecting corresponding nodes (1-5; 2-6; 3-7; 4-8).
Figure 2-14 illustrates this basic connectivity. When you are creating your own connectivity lists
for brick elements, you must keep this basic connectivity in mind, particularly when using dupli-

X Y Z Temperature

Table 2 - 2: Finite-Element Volume - Brick Data Set. Data with 14 nodes and four variables.

64

cated nodes to create pyramids and wedges. Tecplot lets you create elements that violate this basic
connectivity, but the result will probably not be what you want.

The data file in POINT format is shown below:

TITLE = "Example: FE-Volume Brick Data"
VARIABLES = "X", "Y", "Z", "Temperature"
ZONE N=14, E=5, DATAPACKING=POINT, ZONETYPE=BRICK
0.0 0.0 0.0 9.5
1.0 1.0 0.0 14.5
1.0 0.0 0.0 15.0
1.0 1.0 1.0 16.0
1.0 0.0 1.0 15.5
2.0 2.0 0.0 17.0
2.0 1.0 0.0 17.0
2.0 0.0 0.0 17.5
2.0 2.0 1.0 18.5
2.0 1.0 1.0 20.0
2.0 0.0 1.0 17.5
2.0 2.0 2.0 18.0
2.0 1.0 2.0 17.5
2.0 0.0 2.0 16.5

1 1 1 1 2 4 5 3
2 4 5 3 7 10 11 8
4 4 5 5 10 13 14 11
4 4 4 4 9 12 13 10
2 2 4 4 7 6 9 10

The same data in BLOCK format is shown below:

TITLE = "Example: FE-Volume Brick Data"
VARIABLES = "X", "Y", "Z", "Temperature"
ZONE N=14, E=5, DATAPACKING=BLOCK, ZONETYPE=FEBRICK
0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0.0 1.0 0.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 2.0 2.0 2.0
9.5 14.5 15.0 16.0 15.5 17.0 17.0
17.5 18.5 20.0 17.5 18.0 17.5 16.5

1 1 1 1 2 4 5 3
2 4 5 3 7 10 11 8

65

Finite-Element Data

4 4 5 5 10 13 14 11
4 4 4 4 9 12 13 10
2 2 4 4 7 6 9 10

Figure 2-20 shows the resulting mesh plot from the data set listed in this section.

0

0.5

1

1.5

2

Z

0

0.5

1

1.5

2

X

0
0.5

1
1.5

2

Y

X

Y

Z

Figure 2-20. A finite-element brick zone.

Finite-Element Volume - Tetrahedral Data Set
As a simple example of an finite-element volume data set using tetrahedral elements, consider the
data in Table 2 - 3. The data set consists of thirteen nodes, with seven variables. The nodes are to be
connected to form twenty tetrahedral elements, each with four nodes.

X Y Z C U V W
 0 0 -95 -1 1 0 8
 0 85 -42 0 -5 -3 9
 81 26 -42 2 -22 80 8
 50 -69 -42 -6 72 52 9
-50 -69 -42 14 67 -48 9
-81 26 -2 20 -30 -82 9
 0 0 0 1 -2 -5 10
 50 69 43 14 -68 48 11

Table 2 - 3: Finite-Element Volume - Tetrahedral data set with 13 nodes and seven variables.

66

The data file in POINT format for the data in Table 2 - 3 is shown below, and plotted in Figure
2-21:

TITLE = "Example: FE-Volume Tetrahedral Data"
VARIABLES = "X", "Y", "Z", "C", "U", "V", "W"
ZONE N=13, E=20, DATAPACKING=POINT, ZONETYPE=FETETRAHEDRON
0 0 -95 -1 1 0 8
0 85 -42 0 -85 -3 9
81 26 -42 2 -22 80 8
50 -69 -42 -6 72 52 9
-50 -69 -42 14 67 -48 9
-81 26 -42 20 -30 -82 9
0 0 0 1 -2 -5 10
50 69 43 14 -68 48 11
81 -26 43 20 31 82 11
0 -85 43 0 84 3 10
-81 -26 43 2 21 -80 11
-50 69 43 -6 -71 -51 11
0 0 96 1 0 -1 12
1 2 3 7
1 3 4 7
1 4 5 7
1 5 6 7
1 6 2 7
2 8 3 7
3 9 4 7
4 10 5 7
5 11 6 7
6 12 2 7
12 2 8 7
8 3 9 7
9 4 10 7

 81 -26 43 20 31 82 11
 0 -85 43 0 84 -3 10
-81 -26 43 2 21 -80 11
-50 69 43 -6 -71 -51 11
 0 0 96 1 0 -1 12

X Y Z C U V W

Table 2 - 3: Finite-Element Volume - Tetrahedral data set with 13 nodes and seven variables.

67

Finite-Element Data

10 5 11 7
11 6 12 7
12 8 13 7
8 9 13 7
9 10 13 7
10 11 13 7
11 12 13 7

This data file is included in your Tecplot distribution’s examples/data directory as the file
fetetpt.dat. A block format version of the same data is included as the file fetetbk.dat.

Z
X

Y

Figure 2-21. Finite-element volume
tetrahedral data.

68

69

Finite-Element Data

70

71

Function Summary

Chapter 3 Binary Data

This chapter is intended only for advanced users of Tecplot who have a solid background in UNIX
or Windows and application programming. Support for topics discussed in this chapter may be
limited. Regular technical support is not intended to help you program your application to use the
direct data file capabilities of Tecplot.

Data files for Tecplot are commonly created as output from an application program. These files are
most often in ASCII format, and are then converted to a binary format with Preplot.

Included with your distribution of Tecplot is a library that contains utility functions that you can
link with your application program to create binary data files directly, bypassing the use of ASCII
files. This allows for fewer files to manage, conserves on disk space, and saves the extra time
required to convert the files.

In UNIX, the utility functions discussed below are available in the library archive tecio.a which
is located in the lib sub-directory of the Tecplot Home Directory. Under Windows, this library is
called TecIO.dll and is located in the bin sub-directory. Instructions on compiling and linking
using the TECIO library can be found in the readme.doc file in the util/tecio sub-directory
under the TECHOME directory.

Tecplot 360 introduces a new set of TECIO functions to take full advantage of the new capabilities
it offers. Each of these functions has a suffix of "110" to differentiate it from previous editions.
Please note that all previously existing TECIO functions still exist and are supported for backward
compatibility.

3 - 1 Function Summary
The following functions are available from the TECIO archive. For historical reasons, these func-
tions have a FORTRAN flavor to them, both in how they are named and the way in which the
parameters are passed.

Tecplot 360 TECIO Functions:

• TECINI110: Initialize the process of writing a binary data file.

• TECZNE110: Write information about the next zone to be added to the data
file.

72

• TECFOREIGN110: Write the binary file in foreign byte order.

• TECDAT110: Write an array of data to the data file.

• TECNOD110: Write an array of node data to the data file.

• TECLAB110: Write a custom label record to the data file.

• TECGEO110: Write a geometry record to the data file.

• TECTXT110: Write a text record to the data file.

• TECFIL110: Switch output context to a different file.

• TECEND110: Close the data file.

• TECUSR110: Write a character string to the data file in a USERREC record.

• TECAUXSTR110: Write auxiliary data for the data set to the data file.

• TECZAUXSTR110:Write auxiliary data for the current zone to the data file.

• TECVAUXASTR110:Write auxiliary data for a variable to the data file.

• TECFACE110: Write the face connections for the current zone to the data file.

3 - 2 Deprecated Binary Functions
The following functions have been deprecated. We recommend replacing these function calls with
the equivalent Tecplot 360 TecIO function. The deprecated functions will continue to work, but
may lack the full functionality of the new functions.

TECFOREIGN100
TECINI100
TECZNE100
TECDAT100
TECNOD100
TECEND100
TECLAB100
TECUSR100

73

Binary Data File Function Calling Sequence

TECGEO100
TECTXT100
TECFIL100
TECAUXSTR100
TECZAUXSTR100
TECVAUXSTR100
TECFACE100

TECINI
TECZNE
TECDAT
TECNOD
TECEND
TECLAB
TECUSR
TECGEO
TECTXT
TECFIL

3 - 3 Binary Data File Function Calling Sequence
Multiple data files can be written to at the same time. For a given file, the binary data file functions
must be called in a specific order.

The correct order is as follows:

TECFOREIGN110 (optional)
TECINI110
 TECAUXSTR110
 TECVAUXSTR110
 TECZNE110 (One or more to create multiple zones)
 TECDAT110 (One or more to fill each zone)
 TECNOD110 (One for each finite element zone)
 TECFACE110 (One for each zone with face connections)
 TECZAUXSTR110
 TECLAB110
 TECGEO110
 TECTXT110

74

 TECUSR110
TECEND

Section 3 - 4, “Writing to Multiple Binary Data Files,” explains how you can use the TECFIL110
function along with the above functions to write to multiple files at the same time.

TECFOREIGN110 should be called prior to calling TECINI110. The TECZNE110,
TECLAB110, TECGEO110, TECAUXSTR110, TECVAUXSTR110 and TECTXT110 func-
tions can be called anywhere between the TECINI110 and TECEND110 functions. TECDAT110
and TECNOD110 (for finite-element data only) must be called immediately after the TECZNE110
function call. TECFACE110 (where face connections were indicated in the call to TECZNE110)
must be called immediately after TECNOD110 (for finite-element data) or TECZNE110 (for
ordered data). TECZAUXSTR110 must be called following the TECZNE110 call for the zone
with which the auxiliary data is associated.

3 - 4 Writing to Multiple Binary Data Files
Each time TECINI110 is called it sets up a new file “context.” For each file context you must
maintain the order of the calls as described in the previous section. The TECFIL110 function is
used to switch between file contexts. Up to 10 files can be written to at a time. TECFIL110 can be
called almost anywhere after TECINI110 has been called. The only parameter to TECFIL110,
an integer, n, shifts the file context to the nth open file where the files are numbered relative to the
order of the calls to TECINI110.

3 - 5 Character Strings in FORTRAN
All character string parameters in FORTRAN must terminate with a null character. This is done by
concatenating char(0) to the end of a character string.

For example, to send the character string “Hi Mom” to a function called A, the syntax would be:

I=A("Hi Mom"//char(0))

3 - 6 Boolean Flags
Integer parameters identified as "flags" indicate boolean values. Pass 1 for true, and 0 for false.

3 - 7 Binary Data File Function Reference
This section describes each of the TECIO functions in detail.

75

Binary Data File Function Reference

TECAUXSTR110

Summary: Writes auxiliary data for the data set to the data file. The function may be called
any time between TECINI110 and TECEND110. Auxiliary data may be used
by text, macros, equations (if it is numeric) and add-ons. It may be viewed
directly in the AuxData page of the Data Set Information dialog.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECAUXSTR110(Name,
 & Value)
 CHARACTER*(*) Name
 CHARACTER*(*) Value

C Syntax: #include TECIO.h

INTEGER4 TECAUXSTR110(char *Name,
 char *Value)

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: Name - The name of the auxiliary data. If this duplicates an existing name, the
value will overwrite the existing value. Must be a null-terminated character
string.
Value - The value to assign to the named auxiliary data. Must be a null-termi-
nated character string.

TECDAT110

Summary: Writes an array of data to the data file.Data should not be passed for variables
that have been indicated as passive or shared (via TECZNE110).
The following table describes the order the data must be supplied given different
zone types (IsBlock is a parameter supplied to TECZNE110):

76

Note that if any variables are cell centered then the data must be supplied in block format thus
the IsBlock parameter in TECZNE110 MUST be set to 1
TECDAT110 allows you to write your data in a piecemeal fashion in case it is not contained in
one contiguous block in your program. Enough calls to TECDAT110 must be made that the
correct number of values are written for each zone and that the aggregate order for the data is
correct.
In the above summary, NumVars is based on the number of variable names supplied in a previ-
ous call to TECINI110.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECDAT110(N,

Zone
Type

Variable Loca-
tion

IsBlock Number of Val-
ues Supplied

Order

Ordered Nodal 1 IMax*
JMax*
KMax*
NumVars

I varies fastest, then J,
then K, then V

Ordered Nodal 0 IMax*
JMax*
KMax*
NumVars

V varies fastest, then I,
then J, then K

Ordered Cell Centered 1 (IMax-1)*
(JMax-1)*
(KMax-1)*
NumVars

I varies fastest, then J,
then K, then V

Ordered Cell Centered 0 Not allowed
Finite
Element

Nodal 1 IMax (i.e.
NumPts *
NumVars)

N varies fastest, then V

Finite
Element

Nodal 0 IMax (i.e.
NumPts *
NumVars)

V varies fastest, then N

Finite
Element

Cell Centered 1 JMax (i.e.
NumElements *
NumVars)

E varies fastest, then V

Finite
Element

Cell Centered 0 Not allowed

77

Binary Data File Function Reference

 & Data,
 & IsDouble)
 INTEGER*4 N
 REAL or DOUBLE PRECISION Data(1)
 INTEGER*4 IsDouble

C Syntax: #include TECIO.h

INTEGER4 TECDAT110(INTEGER4 *N,
 void *Data,
 INTEGER4 *IsDouble);

Return Value:0 if successful, -1 if unsuccessful.

Parameters: N - Pointer to an integer value specifying number of values to write.
Data - Array of single or double precision data values.
IsDouble - Pointer to the integer flag stating whether the array Data is single (0)
or double (1) precision.

TECEND110

Summary: Must be called to close out the current data file. There must be a corresponding
TECEND110 for each TECINI110.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECEND110()

C Syntax: #include TECIO.h

INTEGER4 TECEND110();

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: None.

TECFACE110

Summary: Writes face connections for the current zone to the file. This function must be
called after TECNOD110, and may only be called if a non-zero value of Num-
FaceConnections was used in the previous call to TECZNE110.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECFACE110(FaceConnections)

78

INTEGER*4 FACECONNECTIONS

C Syntax: #include TECIO.h

INTEGER4 TECFACE110(INTEGER4 *FaceConnections);

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: FaceConnections

The array that specifies the face connections. The array must be dimensioned (L, NumFace-
Connections), where L is determined by the type of face connection specified by the Face-
NeighborMode parameter to TECZNE110:

FaceNeighbor Mode # Values Data
LocalOneToOne 3 cz,fz,cz
LocalOneToMany nz+4 cz,fz,oz,nz,cz1,cz2,...,czn
GlobalOneToOne 4 cz,fz,ZZ,CZ
GlobalOneToMany 2*nz+4 cz,fz,oz,nz,ZZ1,CZ1,ZZ2,CZ2,...,ZZn,

CZn

 Where:

 cz = cell in current zone

 fz = face of cell in current zone

 oz = face obscuration flag (only applies to one-to-many):

 0 = face partially obscured

 1 = face entirely obscured

 nz = number of cell or zone/cell associations (only applies to one-to-many)

 ZZ = remote Zone

 CZ = cell in remote zone

cz,fz combinations must be unique. Additionally, Tecplot assumes that with the
one-to-one face neighbor modes a supplied cell face is entirely obscured by its
neighbor. With one-to-many, the obscuration flag must be supplied. Faces that

79

Binary Data File Function Reference

are not supplied with neighbors are run through Tecplot’s auto face neighbor gen-
erator (FE only).

TECFIL110

Summary: Switch output context to a different file. Each time TECINI110 is called, a new
file “context” is switched to. This allows you to write multiple data files at the
same time.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECFIL110(F)

 INTEGER*4 F

C Syntax:

#include TECIO.h

INTEGER4 TECFIL110(INTEGER4 *F);

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: F - Pointer to integer specifying file number to switch to. A value of 1 indicates a
switch to the file opened by the first call to TECINI110.

TECFOREIGN110

Summary: Sets the byte ordering request for subsequent calls to TECINI110. The byte
ordering request will remain in effect until the next call to this function. This has
no effect on files already opened via TECINI110, it only affects files opened by
future TECINI110 calls. This function is not required. The default is to write out
native byte order.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECFIL110(DoForeignByteOrder)

 INTEGER*4 DoForeignByteOrder

C Syntax:

80

#include TECIO.h

INTEGER4 TECFIL110(INTEGER4 *DoForeignByteOrder);

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: DoForeignByteOrder - Pointer to boolean value indicating if future files created
by TECINI110 should be written out in foreign byte order. 0 indicates native
byte order. 1 indicates foreign byte order.

TECGEO110

Summary: Writes a geometry to the data file.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECGEO110(XOrThetaPos,
 & YOrRPos,
 & ZPos,
 & PosCoordMode,
 & AttachToZone,
 & Zone,
 & Color,
 & FillColor,
 & IsFilled,
 & GeomType,
 & LinePattern,
 & PatternLength,
 & LineThickness,
 & NumEllipsePts,
 & ArrowheadStyle,
 & ArrowheadAttachment,
 & ArrowheadSize,
 & ArrowheadAngle,
 & Scope,
 & Clipping,
 & NumSegments,
 & NumSegPts,
 & XOrThetaGeomData,
 & YOrRGeomData,
 & ZGeomData,
 & MFC)
 DOUBLE PRECISION XOrThetaPos

81

Binary Data File Function Reference

 DOUBLE PRECISION YOrRPos
 DOUBLE PRECISION ZPos
 INTEGER*4 PosCoordMode
 INTEGER*4 AttachToZone
 INTEGER*4 Zone
 INTEGER*4 Color
 INTEGER*4 FillColor
 INTEGER*4 IsFilled
 INTEGER*4 GeomType
 INTEGER*4 LinePattern
 DOUBLE PRECISION PatternLength
 DOUBLE PRECISION LineThickness
 INTEGER*4 NumEllipsePts
 INTEGER*4 ArrowheadStyle
 INTEGER*4 ArrowheadAttachment
 DOUBLE PRECISION ArrowheadSize
 DOUBLE PRECISION ArrowheadAngle
 INTEGER*4 Scope
 INTEGER*4 Clipping
 INTEGER*4 NumSegments
 INTEGER*4 NumSegPts
 REAL*4 XOrThetaGeomData
 REAL*4 YOrRGeomData
 REAL*4 ZGeomData
 CHARACTER*(*) MFC

C Syntax: #include TECIO.h

INTEGER4 TECGEO110(double *XOrThetaPos,
 double *YOrRPos,
 double *ZPos,
 INTEGER4 *PosCoordMode,
 INTEGER4 *AttachToZone,
 INTEGER4 *Zone,
 INTEGER4 *Color,
 INTEGER4 *FillColor,
 INTEGER4 *IsFilled,
 INTEGER4 *GeomType,
 INTEGER4 *LinePattern,
 double *PatternLength,
 double *LineThickness,

82

 INTEGER4 *NumEllipsePts,
 INTEGER4 *ArrowheadStyle,
 INTEGER4 *ArrowheadAttachment,
 double *ArrowheadSize,
 double *ArrowheadAngle,
 INTEGER4 *Scope,
 INTEGER4 *Clipping,
 INTEGER4 *NumSegments,
 INTEGER4 *NumSegPts,
 float *XOrThetaGeomData,
 float *YOrRGeomData,
 float *ZGeomData,
 char *MFC)

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: XOrThetaPos - Pointer to double value specifying the X-position or, for polar
line plots, the Theta-position of the geometry.
YOrRPos - Pointer to double value specifying the Y-position or, for polar line
plots, the R-position of the geometry.
ZPos - Pointer to double value specifying the Z-position of the geometry.
PosCoordMode - Pointer to integer value specifying the position coordinate sys-
tem.

AttachToZone - Pointer to integer flag to signal that the geometry is “attached” to
a zone.
Zone - Pointer to integer value specifying the number of the zone to attach to.
Color - Pointer to integer value specifying the color to assign to the geometry.

FillColor - Pointer to integer value specifying the color used to fill the geometry.
See Color above.
IsFilled - Pointer to integer flag to specify if geometry is to be filled.

0=Grid
1=Frame
6=Grid3D

0=Black 8=Custom1
1=Red 9=Custom2
2=Green 10=Custom3
3=Blue 11=Custom4
4=Cyan 12=Custom5
5=Yellow 13=Custom6
6=Purple 14=Custom7
7=White 15=Custom8

83

Binary Data File Function Reference

GeomType - Pointer to integer value specifying the geometry type.

LinePattern - Pointer to integer value specifying the line pattern.

PatternLength - Pointer to double value specifying the pattern length in frame
units.
LineThickness - Pointer to double value specifying the line thickness in frame
units.
NumEllipsePts - Pointer to integer value specifying the number of points to use
for circles and ellipses. The value must be greater than 0.
ArrowheadStyle - Pointer to integer value specifying the arrowhead style.

ArrowheadAttachment - Pointer to integer value specifying where to attach
arrowheads.

ArrowheadSize - Pointer to double value specifying the arrowhead size in frame
units.
ArrowheadAngle - Pointer to double value specifying the arrowhead angle in
degrees.
Scope - Pointer to integer value specifying the scope. 0=global, 1=local.
Clipping - Specifies whether to clip the geometry (that is, only plot the geometry
within) to the viewport or the frame. 0=ClipToViewport,1=ClipToFrame.
NumSegments - Pointer to integer value specifying the number of polyline seg-
ments.
NumSegPts - Array of integer values specifying the number of points in each of
the NumSegments segments.
XOrThetaGeomData - Array of floating-point values specifying the X-coordi-
nates.
YOrRGeomData - Array of floating-point values specifying the Y-coordinates.
ZGeomData - Array of floating-point values specifying the Z-coordinate.
MFC - Macro function command. Must be null terminated.

0=2D Line Segments 3=Circle
1=Rectangle 4=Ellipse
2=Square 5=3D Line Segments

0=Solid 3=Dotted
1=Dashed 4=LongDash
2=DashDot 5=DashDotDot

0=Plain 2=Hollow
1=Filled

0=None 2=End
1=Beginning 3=Both

84

TECINI110

Summary: Initializes the process of writing a binary data file. This must be called first
before any other TECIO calls are made (except TECFOREIGN110). You may
write to multiple files by calling TECINI110 more than once. Each time
TECINI110 is called, a new file is opened. Use TECFIL110 to switch between
files.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECINI110(Title,
 & Variables,
 & FName,
 & ScratchDir,
 & Debug,
 & VIsDouble)
 CHARACTER*(*) Title
 CHARACTER*(*) Variables
 CHARACTER*(*) FName
 CHARACTER*(*) ScratchDir
 INTEGER*4 Debug
 INTEGER*4 VIsDouble
C Syntax:
#include TECIO.h

INTEGER4 TECINI110(char *Title,
 char *Variables,
 char *FName,
 char *ScratchDir,
 INTEGER4 *Debug
 INTEGER4 *VIsDouble);

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: Title - Title of the data set. Must be null terminated.
Variables - List of variable names. If a comma appears in the string it will be used
as the separator between variable names, otherwise a space is used. Must be null
terminated.
FName - Name of the file to create. Must be null terminated.
ScratchDir - Name of the directory to put the scratch file. Must be null termi-
nated.
Debug - Pointer to the integer flag for debugging. Set to 0 for no debugging or 1
to debug. When set to 1, the debug messages will be sent to the standard output
(stdout).

85

Binary Data File Function Reference

VIsDouble - Pointer to the integer flag for specifying whether field data gener-
ated in future calls to TECDAT110 are to be written in single or double precision.
Set to 0 for single precision or 1 for double.

TECLAB110

Summary: Write a set of custom labels to the data file.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECLAB110(Labels)
 CHARACTER*(*) Labels

C Syntax: #include TECIO.h

INTEGER4 TECLAB110(char *Labels);

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: Labels - Character string of custom labels. Separate labels by a comma or space.
For example, a set of custom labels for each day of the weeks is Sun Mon Tue
Wed Thu Fri Sat.

TECNOD110

Summary: Writes an array of node data to the binary data file. This is the connectivity list
for finite element zones.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECNOD110(NData)
 INTEGER*4 NData (T, M)

C Syntax: #include TECIO.h

INTEGER4 TECNOD110(INTEGER4 *NData);

Return Value: 0 if successful, -1 if unsuccessful.

86

Parameters: NData - Array of integers. This is the connectivity list, dimensioned (T, M) (T
moving fastest), where M is the number of elements in the zone and T is set
according to the following list:

TECTXT110

Summary: Writes a text record to the data file.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECTXT110(XOrThetaPos,
 & YOrRPos,
 & ZOrUnusedPos,
 & PosCoordMode,
 & AttachToZone,
 & Zone,
 & Font,
 & FontHeightUnits,
 & FontHeight,
 & BoxType,
 & BoxMargin,
 & BoxLineThickness,
 & BoxColor,
 & BoxFillColor,
 & Angle,
 & Anchor,
 & LineSpacing,
 & TextColor,
 & Scope,
 & Clipping,
 & Text,
 & MFC)
 DOUBLE PRECISION XOrThetaPos

ELEMENT TYPE T
Line Segment 2

Triangle 3

Quadrilateral 4

Tetrahedral 4

Brick 8

87

Binary Data File Function Reference

 DOUBLE PRECISION YOrRPos
 DOUBLE PRECISION ZOrUnusedPos,
 INTEGER*4 PosCoordMode
 INTEGER*4 AttachToZone
 INTEGER*4 Zone
 INTEGER*4 Font
 INTEGER*4 FontHeightUnits
 DOUBLE PRECISION FontHeight
 INTEGER*4 BoxType
 DOUBLE PRECISION BoxMargin
 DOUBLE PRECISION BoxLineThickness
 INTEGER*4 BoxColor
 INTEGER*4 BoxFillColor
 DOUBLE PRECISION Angle
 INTEGER*4 Anchor
 DOUBLE PRECISION LineSpacing
 INTEGER*4 TextColor
 INTEGER*4 Scope
 INTEGER*4 Clipping
 CHARACTER*(*) Text
 CHARACTER*(*) MFC

C Syntax: #include TECIO.h

INTEGER4 TECTXT110(double *XOrThetaPos,
 double *YOrRPosPos,
 double *ZOrUnusedPos,
 INTEGER4 *PosCoordMode,
 INTEGER4 *AttachToZone,
 INTEGER4 *Zone,
 INTEGER4 *Font,
 INTEGER4 *FontHeightUnits,
 double *FontHeight,
 INTEGER4 *BoxType,
 double *BoxMargin,
 double *BoxLineThickness,
 INTEGER4 *BoxColor,
 INTEGER4 *BoxFillColor,
 double *Angle,
 INTEGER4 *Anchor,
 double *LineSpacing,
 INTEGER4 *TextColor,

88

 INTEGER4 *Scope,
 INTEGER4 *Clipping,
 char *Text,
 char *MFC)

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: XOrThetaPos - Pointer to double value specifying the X-position or Theta-posi-
tion (polar plots only) of the text.
YOrRPos - Pointer to double value specifying the Y-position or R-position (polar
plots only) of the text.
ZOrUnusedPos - Pointer to double value specifying the Z-position of the text.
PosCoordMode - Pointer to integer value specifying the position coordinate sys-
tem.

AttachToZone - Pointer to integer flag for to signal that the text is “attached” to a
zone.
Zone - Pointer to integer value specifying the zone number to attach to.
Font - Pointer to integer value specifying the font.

FontHeightUnits - Pointer to integer value specifying the font height units.

FontHeight - Pointer to double value specifying the font height.
BoxType - Pointer to integer value specifying the box type.

BoxMargin - Pointer to double value specifying the box margin (in frame units).
BoxLineThickness - Pointer to double value specifying the box line thickness (in
frame units).

0=Grid
1=Frame
6=Grid3D

0=Helvetica 6=Times Italic
1=Helvetica Bold 7=Times Bold
2=Greek 8=Times Italic Bold
3=Math 9=Courier
4=User-Defined 10=Courier Bold
5=Times

0=Grid 2=Point
1=Frame

0=None 2=Hollow
1=Filled

89

Binary Data File Function Reference

BoxColor - Pointer to integer value specifying the color to assign to the box.

BoxFillColor - Pointer to integer value specifying the fill color to assign to the
box. (See BoxColor)
Angle - Pointer to double value specifying the text angle in degrees.
Anchor - Pointer to integer value specifying where to anchor the text.

LineSpacing - Pointer to double value specifying the text line spacing.
TextColor - Pointer to integer value specifying the color to assign to the text. (See
BoxColor)
Scope - Pointer to integer value specifying the scope.

Clipping - Specifies whether to clip the geometry (that is, only plot the geometry
within) to the viewport or the frame. 0=ClipToViewport,1=ClipToFrame.
Text - Character string representing text to display. Must be null terminated.
MFC - Macro function command. Must be null terminated.

TECUSR110

Summary: Writes a character string to the data file in a USERREC record. USERREC
records are ignored by Tecplot, but may be used by add-ons.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECUSR110(S)
 CHARACTER*(*) S

0=Black 8=Custom1
1=Red 9=Custom2
2=Green 10=Custom3
3=Blue 11=Custom4
4=Cyan 12=Custom5
5=Yellow 13=Custom6
6=Purple 14=Custom7
7=White 15=Custom8

0=Left 5=MidRight
1=Center 6=HeadLeft
2=Right 7=HeadCenter
3=MidLeft 8=HeadRight
4=MidCenter

0=Global 1=Local

90

C Syntax: #include TECIO.h

INTEGER4 TECUSR110(CHAR *S);

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: S - The character string to write to the data file. Must be null-terminated.

TECVAUXSTR110

Summary: Writes an auxiliary data item to the data file for the specified variable. Must be
called after TECINI110 and before TECEND110. Auxiliary data may be used
by text, macros, equations (if it is numeric) and add-ons. It may be viewed
directly in the AuxData page of the Data Set Information dialog.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECVAUXSTR110(Var, Name,
Value)
&
 INTEGER*4 Value
 CHARACTER*(*) Name
 CHARACTER*(*) Value

C Syntax: #include TECIO.h

INTEGER4 TECZAUXSTR110(INTEGER4 *Var,
 char *Name,
 char *Value);

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: Var - The varible number for which to set the auxiliary data. Variable numbers
start at one.
Name - The name of the auxiliary data item. If a data item with this name already
exists, its value will be overwritten. Must be a null-terminated character string.
Value - The auxiliary data value to be written to the data file. Must be a null-ter-
minated character string.

TECZAUXSTR110

Summary: Writes an auxiliary data item for the current zone to the data file. Must be called
after TECZNE110 for the desired zone. Auxiliary data may be used by text,

91

Binary Data File Function Reference

macros, equations (if it is numeric) and add-ons. It may be viewed directly in the
AuxData page of the Data Set Information dialog.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECZAUXSTR110(Name, Value)
&
 CHARACTER*(*) Name
 CHARACTER*(*) Value

C Syntax: #include TECIO.h

INTEGER4 TECZAUXSTR110(char *Name,
 char *Value);

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: Name - The name of the auxiliary data item. If a data item with this name already
exists, its value will be overwritten. Must be a null-terminated character string.
Value - The auxiliary data value to be written to the data file. Must be a null-ter-
minated character string.

TECZNE110

Summary: Writes header information about the next zone to be added to the data file. After
TECZNE110 is called, you must call TECDAT110 one or more times (and then
call TECNOD110 if the data format is FEBLOCK or FEPOINT).

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECZNE110(ZoneTitle,
&ZoneType,
&IMxOrNumPts,
&JMxOrNumElements,
&KMx,
&ICellMax,
&JCellMax,
&KCellMax,
&SolutionTime,
&StrandID,
&ParentZone,
&IsBlock,
&NumFaceConnections,
&FaceNeighborMode,
&PassiveVarList,

92

&ValueLocation,
&ShareVarFromZone
&ShareConnectivityFromZone)

CHARACTER*(*)ZoneTitle
INTEGER*4ZoneType
INTEGER*4IMxOrNumPts
INTEGER*4JMxOrNumElements
INTEGER*4KMx
INTEGER*4ICellMax
INTEGER*4JCellMax
INTEGER*4KCellMax
DOUBLE PRECISION Solution Time
INTEGER*4StrandID
INTEGER*4ParentZone
INTEGER*4N
INTEGER*4M
INTEGER*4IsBlock
INTEGER*4NumFaceConnections
INTEGER*4FaceNeighborMode
INTEGER*4PassiveVarList
INTEGER*4ValueLocation
INTEGER*4ShareVarFromZone
INTEGER*4ShareConnectivityFromZone

C Syntax: #include TECIO.h

INTEGER4 TECZNE110(char *ZoneTitle,
INTEGER4*ZoneType,
INTEGER4*IMxOrNumPts,
INTEGER4*JMxOrNumElements,
INTEGER4*KMx,
INTEGER4*ICellMax,
INTEGER4*JCellMax,
INTEGER4*KCellMax,
DOUBLE*SolutionTime,
INTEGER4*StrandID,
INTEGER4*ParentZone,
INTEGER4*IsBlock,
INTEGER4*NumFaceConnections,
INTEGER4*FaceNeighborMode,

93

Binary Data File Function Reference

INTEGER4*PassiveVarList,
INTEGER4*ValueLocation,
INTEGER4*ShareVarFromZone,
INTEGER4*ShareConnectivityFromZone)

Return Value: 0 if successful, -1 if unsuccessful.

Parameters: ZoneTitle - The title of the zone. Must be null-terminated.
ZoneType - The type of the zone: 0=ORDERED, 1=FELINESEG, 2=FETRIAN-
GLE, 3=FEQUADRILATERAL, 4=FETETRAHEDRON, 5=FEBRICK
IMxOrNumPts - For ordered zones, the number of nodes in the I index direction.
For finite-element zones, the number of nodes.
JMxOrNumElements - For ordered zones, the number of nodes in the J index
direction. For finite-element zones, the number of elements.
KMx - For ordered zones, the number of nodes in the K index direction. Not used
for finite-element zones.
ICellMax - For zones of type FEBRICK only, the number of cells logically con-
nected in the I index direction.
JCellMax - For zones of type FEBRICK only, the number of cells logically con-
nected in the J index direction.
KCellMax - For zones of type FEBRICK only, the number of cells logically con-
nected in the K index direction.
SolutionTime - Scalar double precision value specifying the time associated with
the zone.
StrandID - Scalar integer value specifying the strand to which the zone is associ-
ated. A value of zero indicates the zone is static and not associated with a strand.
A value of -1 indicates that the strand id for this zone is pending assignment by
Tecplot’s data loader (intermediate value only). Values greater than 0 indicate a
zone is assigned to a given strand.
ParentZone - Scalar integer value representing the relationship between this zone
and its parent. A value of zero indicates that this zone is not associated with a
parent zone. A value greater than zero is considered this zone's parent. A zone
may not specify itself as its own parent. With a parent zone association, Tecplot
can generate surface-restricted streamtraces.
IsBlock - Indicates whether the data will be passed into TECDAT110 in BLOCK
or POINT format. 0=POINT, 1=BLOCK.
NumFaceConnections - The number of face connections that will be passed in
routine TECFACE110.
FaceNeighborMode - The type of face connections that will be passed in routine
TECFACE110. 0=LocalOneToOne, 1=LocalOneToMany, 2=GlobalOneToOne,
3=GlobalOneToMany
PassiveVarList - Array, dimensioned by the number of variables, of 4 byte integer
values specifying the active/passive nature of each variable. A value of 0 indi-

94

cates the associated variable is active while a value of 1 indicates that it is pas-
sive.
ValueLocation - The location of each variable in the data set. ValueLocation(I)
indicates the location of variable I for this zone. 0=cell-centered, 1=node-cen-
tered. Pass null to indicate that all variables are node-centered.
ShareVarFromZone - Indicates variable sharing. Array, dimensioned by the num-
ber of variables. ShareVarFromZone(I) indicates the zone number with which
variable I will be shared. This reduces the amount of data to be passed via
TECDAT110. A value of 0 indicates that the variable is not shared. Pass null to
indicate no variable sharing for this zone. You must pass null for the first zone in
a data set (there is no data available to share).
ShareConnectivityFromZone - For finite-element zones only, Indicates the zone
number with which connectivity is shared. Pass 0 to indicate no connectivity
sharing. You must pass 0 for the first zone in a data set.

The commands below are the old TECIO commands which still work for purposes of backwards
compatibility. Note that in many cases, these functions take the same inputs as their current coun-
terparts.

3- 7.1 Example Programs
Example programs written in both FORTRAN and C that demonstrate the use of the TECIO utility
functions can be found in the util/tecio directory below the Tecplot Home Directory:

simtest.f, simtest.c:Demonstrates simple use of the TECIO utility functions.

comtest.f, comtest.c:Demonstrates the complex use of TECIO utility functions such as
multiple file generation and transient data.

See the file readme.txt in the same directory for instructions on how to compile these examples.

95

Numerics
2-D plots

creating 40, 41
3-D lines

creating in geometries 21, 22
example of geometry record 23
geometry record 20, 23

3-D plots
creating 42, 43

A
Add-On Developer’s Kit 9
Arrowheads

geometry records 21
in polyline geometries 21

ASCII data
binary conversion 55
example 9

AUXDATA parameter 13
Auxiliary data 9, 13, 26

AUXDATA parameter 13
data record 26
DATSETAUXDATA 9
examples 26
for data sets 75
for zones 90

Axes
custom labels 25
default assignments 10

B
Binary data files

function reference 74
Binary files

ASCII conversion 9
efficiency 9
function reference 74

BIT data type
format registration 12

BLOCK format 43
3-D data files 64
creating data file 59
example in FORTRAN with I-ordered data 34
example of triangle mesh 51
example with IJK-ordered data 46
example with IJ-ordered data 38
example with I-ordered data 34
examples 35
FORTRAN example for triangle mesh 51
FORTRAN example with IJK-ordered data 47

FORTRAN example with IJ-ordered data 38
Triangle element type 51

Brick element type 43, 49
connectivity list 49

Brick polyhedral elements 63
BYTE data type 47

C
C

writing data to binary 9
Circle

example of geometry record 22
geometry record 20, 21, 22

Colors
fill colors in geometries 20
geometries 20
text 18
zones 17

Comments
data files 9

Connectivity list
copy 50
examples 53
finite-element 48
finite-element data lists 58
for Brick element type 49
sharing 14, 53

Continuation lines
in data files 9

Contour legend
custom labels 25

Control lines
for zone types 17

Coordinate systems
text 18
text in frames 18

Custom label record 9, 25
Custom labels

axes 25
contour legend 25
example 25
nodes 25

D
Data

ASCII data files 55
ASCII file example 9
ASCII file format 9
binary data files 9
BIT type 12

96

BLOCK format 43
BLOCK format example 35
BYTE type 12
connectivity list 48
continuation line in files 9
converting ASCII to binary 9
DOUBLE type 12
example of I-ordered in POINT format 33
FEPOINT format example 43, 44
finite-element mesh plots 43
geometry record files 20
IJK-ordered 42, 44
IJK-ordered one variable files 47
IJK-ordered zone record 44
IJ-ordered in mesh plots 40
IJ-ordered maximum index 37
IJ-ordered organization 37
IJ-ordered zone record 37
I-ordered 32
I-ordered files 11
I-ordered one variable files 47
line length maximum in files 9
LONGINT type 12
ordered data format 32
PLOT3D file options with Preplot 57
PLOT3D files 56
POINT format 43
point format 11
POINT format example 35
POINT format for I-ordered 32
POINT format triangle mesh example 50
preprocessing files with Preplot 55
quote strings in files 9
SHORTINT type 12
SINGLE type 12
transient 17
types 12

Data files
comments in files 9
custom label record 9
Escape character in files 9
example of IJK-ordered in BLOCK format 46
example of IJK-ordered in POINT format 45
example of IJ-ordered in BLOCK format 38
example of IJ-ordered in POINT format 37
example of I-ordered in BLOCK format 34
example of I-ordered in POINT format 32
function sequence 73
geometry record file format 20
geometry record files 9

one variable files 47
one variable IJ-ordered files 47
text record 9
text record file format 18
text records in files 18
zone record types 17

Data format
conversion 55, 56

Data sets
auxiliary data record 26
finite-element brick 63
finite-element brick creation 63
finite-element creation 58
finite-element mesh plots 41
finite-element POINT format 41
finite-element quadrilaterals 59
finite-element volume 63
finite-element volume tetrahedral 65
tetrahedron 63

Data sharing
connectivity 94
field variables 94

DATAPACKING 11
DATASETAUXDATA 9

E
Element type

Brick 43
brick 49
quadrilateral 48
tetrahedron 49
triangle 50, 53, 54

Ellipse
geometry record 20, 21
number of points in geometries 21

Escape character
data files 9

Example
2D field plot 40
3D field plot 42
ASCII data 9
geometry record 22
geometry record (detailed) 24
point format 11
preplot 55

F
Face neighbors 14
FACENEIGHBORCONNECTIONS 14
FACENEIGHBORMODE 14

97

FEBLOCK format
finite-element 48

FEPOINT format
BIT data type restriction 12
example data file 43, 44

File headers 9
title 10
variable names 10

Point format
see also FEPOINT format

Finite-element
3-D volumes 63
BLOCK format 43, 64
brick 49
brick data sets 63
brick element creation 63
Brick element type 43
data 9
data connectivity list 48
data set connectivity lists 58
data set creation 58
duplicating variables 53
element type in zones 17
example of node variable parameters 52
FEBLOCK format 48
mesh plot data 43
mesh plots 41
mixing element types 49
number of elements in zones 17
number of nodes 17
POINT format 41, 43, 64
quadrilateral data sets 59
surface zones 49
tetrahedron volume data sets 63
volume brick data set creation 63
volume data connectivity list 43
volume data sets 63
volume data value list 43
volume tetrahedral data set 65
volume zones 49
zones 17

Format
data packing 11
data types 12
point 11

FORTRAN
BLOCK format triangle mesh 51
example of I-ordered in BLOCK format 34
example with BLOCK format 38
POINT format triangle mesh 51

triangle finite-element point data 51
writing data to binary 9

Frames
frame units for geometries 20
geometry coordinate systems 20
text coordinate system 18
text height units 18

Functions
binary data files 74

G
Geometries

3-D lines 21, 22
arrowheads 21
data file examples 24
file formats 20

Geometry record 9
3-D line 20, 21, 23
circle 20, 21, 22
color 20
control line 20
ellipse 20, 21
example of 3-D lines 23
example of circle 22
file format 20
line 20, 21, 22
line thickness 20
line type 20
polyline 20, 22
polyline example 22
rectangle 20, 21, 22
square 20, 21

Geometry records 20
arrowheads 21

GLOBALONETOMANY
face neighbor mode 14

GLOBALONETOONE
face neighbor mode 14

Grid coordinate system
geometries 20

Grid units
text 18

H
Height units

text 18

I
IJK-ordered data 44

example in BLOCK format 46

98

example in POINT format 45
FORTRAN example in BLOCK format 47
FORTRAN example with POINT format 46
maximum J-index 44
maximum K-index 45
mesh plots 42
one variable data files 47

IJ-ordered data
example with BLOCK format 38
example with POINT format 37
FORTRAN example in POINT format 38
maximum index 17, 37
mesh plots 40
one variable data files 47
organization 37
sample FORTRAN code for creating 37

I-ordered data 32
example in POINT format 32
example with BLOCK format 34
example with POINT format 33
files 11
FORTRAN example in BLOCK format 34
maximum I-index 32
maximum index 17
one variable data files 47
POINT format 32

L
Labels

see also Custom label record
Line pattern

geometry 20
Line plots

multi-zone example 34
Line type

geometries 20
Lines

3-D line in geometry record 20
arrowheads in geometries 21
arrowheads in polyline geometries 21
families of 37
geometry record 20, 22

LOCALONETOMANY
face neighbor mode 14

LOCALONETOONE
face neighbor mode 14

M
Mesh plots

2-D creation 40

2-D field plot creation 40
3-D creation 42, 43
creating 41
finite-element data 41, 43
finite-element volume data 43
IJK-ordered data 42
IJ-ordered 40

Multi-zone line plot
example 34

N
Newline

multiple lines in text record 19
Nodes

custom labels 25

O
Ordered data 9

format 32
IJK-ordered 44
IJ-ordered 40

Ordered zones 13
maximum J-index 17
maximum K-index 17

P
PLOT3D files 55, 56

examples with Preplot 57
Preplot options 57
solution files 57

POINT format 41, 43
3-D volume data files 64
BIT data type restriction 12
creating a data file 58
example data file 41
example of I-ordered data 32
example with IJK-ordered data 45
example with IJ-ordered data 37
example with I-ordered data 33
examples 35
FORTRAN example for triangle mesh 51
FORTRAN example with IJK-ordered data 46
FORTRAN example with IJ-ordered data 38
I-ordered data 32
triangle mesh example 50

Points
text height units 18

Polylines
3-D geometry record 23
arrowheads 21

99

geometry record 20, 22
Preplot 9, 55

ASCII data to binary 9
examples 55, 56, 57
options 55
PLOT3D options 57
preprocessing data files 55
running under Windows 55

Q
Quadrilateral

element type 48
Quadrilateral polygonal elements

finite-element data 59
Quotes strings

in data files 9

R
Record keywords

index 9
Rectangle

geometry record 20, 21, 22

S
Sharing, connectivity 14
Shortcuts

duplicate connectivity lists 50
SHORTINT data type 47, 48
SINGLE data type 47
Solution time 17
SOLUTIONTIME 17
Spacing

between text lines 19
Square

geometry record 20, 21
Strand

identification 17
STRANDID 17

T
TECINI binary data file function 84
tecutil.a 71
Tetrahedral polyhedral elements

FE-volume data set 63, 65
Tetrahedron element type 49
Text 18

anchor position 18
box 19

Text record 9
anchor position 18

boxed 19
color 18
control line 18
coordinate system 18
examples 34
file format 18
height units 18
line spacing 18
origin 18
specify height 18
text string 18

Titles
zones 17

Transient data
solution time 17
strand id 17

Triangle element type 50, 53, 54
FORTRAN code sample 51
in BLOCK format 51

U
Utilities

Preplot 9, 55, 56, 57

V
Value list

for volume data 43
Variable

sharing
VARSHARELIST

parameter 13
Variable location

writing to data file 94
Variable sharing

VARSHARELIST parameter 53
Variables

connectivity list sharing 53
default axis assignments 10
one variable data files 47

Volume data value list 43

Z
Zone

variable sharing 13
Zone record 11

BLOCK format 46
connectivity list 48
data packing 11
element type 17, 48

100

element types 48
finite-element data 17
formats 11
IJK-ordered data 44
IJ-ordered data 37
initial color 17
I-ordered data 32
maximum index 44
maximum J-index 17
maximum J-nodes 44
maximum K-index 17
maximum K-nodes 44
number of elements 17, 48
number of nodes 17, 48
numerical values 13
repeating values 13
title 17
type 17
zone type 11

Zone types
parameters 17

Zones
finite-element surface 49
multi-zone line plot example 34
ordered 13
record 11, 13
type parameters 17

ZONETYPE 11

	Chapter 1 Best Practices
	1 - 1 Create Binary Data Files instead of ASCII
	1 - 2 Use Block Format instead of Point Format
	1 - 3 Use the Native Byte Ordering for the Target Machine
	1 - 4 Add Auxiliary data to Preset Variable Assignments in Tecplot
	1 - 5 Data Sharing
	1 - 6 Passive Variables

	Chapter 2 ASCII Data
	2 - 1 ASCII Data File Records
	2 - 2 ASCII Data File Parameters
	2 - 3 Ordered Data
	2- 3.1 I-Ordered Data
	2- 3.2 IJ-Ordered Data
	2- 3.3 IJK-Ordered Data

	2 - 4 Finite-Element Data
	2- 4.1 Variable and Connectivity List Sharing
	2- 4.2 ASCII Data File Conversion to Binary
	2- 4.3 Finite-Element Data Sets

	Chapter 3 Binary Data
	3 - 1 Function Summary
	3 - 2 Deprecated Binary Functions
	3 - 3 Binary Data File Function Calling Sequence
	3 - 4 Writing to Multiple Binary Data Files
	3 - 5 Character Strings in FORTRAN
	3 - 6 Boolean Flags
	3 - 7 Binary Data File Function Reference
	3- 7.1 Example Programs

