Thinking Like A Scientist

•••

Introduction to the Scientific Method
Adapted from Katie Rose

Scientific Method

Take a minute to write down the order of the scientific method.

- 1. Observation
- 2. Hypothesis
- 3. Experimentation
- 4. Data Collection
- 5. Analyzing Results

All scientists begin a research project with the same curious intention... they ask *WHY* and *HOW* a natural phenomenon occurs.

<u>Natural phenomenon</u>- something this is observed to happen or exist

Predict the natural phenomenon that is causing movement of the cough droplets.

Asking Questions

Good Questions:

- □ Address the **phenomenon** or **problem**
- □ Identify the **nature** of the question
 - □ Observational What do I notice?
 - □ Explanatory How does it work?
 - □ Systems What happens in the system?
- □ Engineering What is the problem?
- □ Can be empirically tested

Now listen carefully and <u>identify</u> the natural phenomenon.

Construct a model of cough droplet movement after a heavy cough.

Thinking Like A Scientist

Now that you've observed the phenomenon and the problem with cough droplet movement that could contain covid-19 virus and infect other people nearby, **propose a solution** to the problem.

The most realistic and feasible solution is to wear a face mask.

- Create a hypothesis about the effect of cough droplet movement when wearing a face mask. *Can use the "If... then..." format for writing a hypothesis
- Construct a second model hypothesizing the movement of cough droplets with a face mask being worn.

Now let's watch what occurs when a face mask is worn.

MARK Method to the experiment

M= Modify

A = Add

R= Remove

K= Keep

Using a different colored pen, highlighter, or marker reevaluate

your **second model** of cough droplets movement while a face

mask is worn.

You should use each component at least once, some you may

use more than once.

Watching the experiment one last time, **identify** the:

-independent variable(s)

-dependent variable(s)

- and control(s)

Experimental Variables

- There are three kinds of variables
- **Independent variable-** factors that you manipulate in an experiment (What I change)
- **Dependent variab**le- factors you observe or measure (What I observe)
- Controlled Variable- other factors you keep constant so they don't affect what you are testing (What I keep the same)

What are the variables for this experiment? What is the INDEPENDENT, DEPENDENT and some CONTROLLED variables?

Adapted from Nucleus Medical Media

Creating a CER

Now let's make a CER based on how wearing a face mask redirects movement of cough droplets due to thermal currents.

C= Claim

E= Evidence

R= Reasoning

- 1. Make a claim: Make an assertion that is based on evidence or knowledge. (one sentence)
- 2. Justify the claim: Provide evidence to support, qualify, or defend a claim, and/or provide reasoning to explain how that evidence supports or qualifies the claim. (should include the natural phenomenon, cough droplet movement through thermal currents)