1. Propane, C_3H_8 , is a hydrocarbon that is commonly used as fuel for cooking.

- (a) Write a balanced equation for the complete combustion of propane gas, which yields $CO_2(g)$ and $H_2O(l)$.
- (b) Calculate the volume of air at 30°C and 1.00 atmosphere that is needed to burn completely 10.0 grams of propane. Assume that air is 21.0 percent O₂ by volume.
- (c) The heat of combustion of propane is -2,220.1 kJ/mol. Calculate the heat of formation, ΔH_f° , of propane given that ΔH_f° of H₂O(*l*) = -285.3 kJ/mol and ΔH_f° of CO₂(*g*) = -393.5 kJ/mol.
- (d) Assuming that all of the heat evolved in burning 30.0 grams of propane is transferred to 8.00 kilograms of water (specific heat = 4.18 J/g·K), calculate the increase in temperature of water.

*1. Pentane, C_5H_{12} , is a hydrocarbon used in the production of Styrofoam and is present in certain fuels.

- (a) Write a balanced equation for the complete combustion of pentane gas, which yields $CO_2(g)$ and $H_2O(l)$.
- (b) Calculate the volume of air at 25°C and 1.00 atmosphere that is needed to burn completely 50.5 grams of pentane. Assume that air is 21.0 percent O₂ by volume.
- (c) The heat of combustion of pentane is -3,285.3 kJ/mol. Calculate the heat of formation, ΔH_f° , of pentane given that ΔH_f° of H₂O(*l*) = -285.3 kJ/mol and ΔH_f° of CO₂(*g*) = -393.5 kJ/mol.
- (d) Assuming that all of the heat evolved in burning 50.5 grams of pentane is transferred to 10.0 kilograms of water (specific heat = 4.18 J/g-K), calculate the increase in temperature of water.
- 2. (a) The specific heat of fluorine gas is 0.037 J/g•K. Calculate the molar heat capacity (in J/mol•K) of fluorine gas. (See Example 2a in notes)
 - (b) The molar heat capacity of a compound with the formula $C_4H_{10}SO$ is 43.6 J/mol•K. Calculate the specific heat, c, of this substance. *(See Example 2b in notes)*

3.	Given the following data:		$S(s) + 3/2 O_2(g) \rightarrow SO_3(g)$ 2 SO ₂ (g) + O ₂ \rightarrow 2 SO ₃ (g)		ΔH = -395.2 kJ ΔH = -198.2 kJ	
	Calculate ΔH for the reaction: (See Examples 5 and 6 in notes) $S(s) + O_2(g) \rightarrow SO_2(g)$				AII - 190.2 KJ	
4.	Given: $\Delta H_f^o \mathrm{NH}_3(\mathrm{g}) = \Delta H_f^o \mathrm{CH}_4(\mathrm{g}) =$			$\Delta H_f^o \operatorname{H_2O}(g) = -241.85 \text{ kJ}$ $\Delta H_f^o \operatorname{HCN}(g) = +135.13 \text{ kJ}$		
		Calculate ΔH^o_{rxn} for: $2 \text{ NH}_3(g) + 3 \text{ O}_2(g) + 2 \text{ CH}_4(g) \rightarrow 2 \text{ HCN}(g) + 6 \text{ H}_2\text{O}(g)$ (See Examples 7 and 8 in notes)				
Answers:						
1.	(a) (c)	$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$ -101.6 kJ/mol	(b) (d)	135 L of air $\Delta T = 45.2^{\circ}$		
*1.	(a) (c)	$\begin{array}{l} C_5H_{12}+8~O_2 \rightarrow 5~CO_2+6~H_2O\\ \textbf{-394.0~kJ/mol} \end{array}$	(b) (d)	654 L of air 55.1 K		
2. 3.			(b) 4.	0.411 J/g∙K -939.24 kJ		