Tangent Line Problems

AP Calculus

Name:

Hoswers

Find all points on the graph of $y = x^3 - 3x$ where the tangent line is parallel to the line whose equation is given by y = 9x + 4. Write the equation of one of those tangent lines. 5loga = 9

$$y' = 3x^{2} - 3$$
 $9 = 3x^{2} - 3$
 $12 = 3x^{2}$
 $4 = x^{2}$
 $x = \pm 2$

$$f(a) = (a)^3 - 3(a) = 2$$

$$f(-a) = (-a)^3 - 3(-a) = -2$$

$$y-2 = 9(x-2)$$
or
 $y+2 = 9(x+2)$

Find a and b so that the graph of $y = ax^2 + bx$ is tangent to the line 2) y = -2 at x = 1.

$$\Gamma$$
 $Slope = 0$ at $X = 1$

$$y' = 2ax + b$$

at $x = 0$ $y' = 2a(1) + b$

$$\begin{array}{c}
2a + b = 0 \\
-2 = a + b \\
-2 - a = b \\
\end{array}$$

$$-2 = a(1)^{2} + b(1)$$

 $-2 = a + b$

Solve system to find a +b

$$2a + -2 - a = 0$$
 $a = 2$
 $b = -2 - a = -4$

3) Given the equation $x^2 + 2xy - y^2 + x = 2$ write the equation of the tangent line <u>and</u> the equation of the normal line at the point where x = 1 and the curve is above the x-axis

at
$$x=1$$
: $(1)^2 + 2(1)y - y^2 + (1) = 2$
 $1 + 2y - y^2 + 1 = 2$
 $2y - y^2 = 0$
 $y(2-y) = 0$
 $y = 0, y = 2$ Use

Use (1,2) since about x-axis

tangent + normal lines > find sleeps

$$2x + 2y + 2x \frac{dy}{dx} - 2y \frac{dy}{dx} + 1 = 0$$

$$\frac{dy}{dx}(2x-2y) = -2x-2y-1$$

$$\frac{dy}{dx} = \frac{-2x-2y-1}{2x-2y}$$

tangent line: $y-2=\frac{7}{2}(x-1)$

normal line:
$$y-2=-\frac{2}{7}(\chi-1)$$