Study Guide for **Reteaching and Practice**

by Kay Thompson

Structure and Method

Book 2

Brown Dolciani Sorgenfrey Kane

McDougal Littell

A HOUGHTON MIFFLIN COMPANY
EVANSTON, ILLINOIS
BOSTON • DALLAS • PHOENIX

Contents

Symbols Table of Measures

1	Basic	Concepts of Algebra			
	1-1	Real Numbers and Their Graphs	1-2		
	1-2	Simplifying Expressions	3-4		
	€ 1−3	Basic Properties of Real Numbers	5-6		
	1-4	Sums and Differences	7-8		
	1-5	Products	9-10		
	1-6	Quotients	11-12		
	1-7	Solving Equations in One Variable	13-14		
	1-8	Words into Symbols	15-16		
	1-9	Problem Solving with Equations	17-18		
2	Inea	ualities and Proof	400		
_	15				
	2-1	Solving Inequalities in One Variable	19-20		
	2-2	Solving Combined Inequalities	21-22		
	2-3	Problem Solving Using Inequalities	23-24		
	2-4	Absolute Value in Open Sentences	25-26		
	2-5	Solving Absolute Value Sentences Graphically	27-28		
	2-6	Theorems and Proofs	29-30		
	2–7	Theorems About Order and Absolute Value	31–32		
3	Linea	Linear Equations and Functions			
	3-1	Open Sentences in Two Variables	33-34		
	3-2	Graphs of Linear Equations in Two Variables	35-36		
	3-3	The Slope of a Line	37-38		
	3-4	Finding an Equation of a Line	39-40		
	3-5	Systems of Linear Equations in Two Variables	41-42		
	3-6	Problem Solving: Using Systems	43-44		
	3-7	Linear Inequalities in Two Variables	45-46		
	3-8	Functions 1997 Indiana.	47-48		
	3-9	Linear Functions	49-50		
	3-10	Relations	51-52		
4	Prod	ucts and Factors of Polynomials			
		Polynomials	53-54		
	4-2	Using Laws of Exponents	55-56		
	4-3	Multiplying Polynomials	57-58		
	4-4	Using Prime Factorization	59-60		
	4-5	Factoring Polynomials	61-62		
	4-6	Factoring Quadratic Polynomials	63-64		
	4-7	Solving Polynomial Equations	65-66		
	4-8	Problem Solving Using Polynomial Equations	67-68		
	4-9	Solving Polynomial Inequalities	69-70		
	7	borring rotynomial inequalities	0)-10		

Rational Expressions 5-1Quotients of Monomials 71 - 725 - 2Zero and Negative Exponents 73-74 5 - 3Scientific Notation and Significant Digits 75-76 5-4 Rational Algebraic Expressions 77-78 5-5 Products and Quotients of Rational Expressions 79-80 5-6Sums and Differences of Rational Expressions 81-82 5-7 Complex Fractions 83-84 5 - 8Fractional Coefficients 85-86 5-9 Fractional Equations 87 - 88**Irrational and Complex Numbers** 6 - 1Roots of Real Numbers 89-90 6 - 2Properties of Radicals 91-92 6 - 3Sums of Radicals 93-94 6 - 4**Binomials Containing Radicals** 95-96 6 - 5**Equations Containing Radicals** 97-98 6-6 Rational and Irrational Numbers 99-100 6-7 The Imaginary Number i 101-102 6-8 The Complex Numbers 103-104 **Quadratic Equations and Functions** 7 - 1Completing the Square 105-106 7 - 2The Quadratic Formula 107-108 7 - 3The Discriminant 109-110 7 - 4Equations in Quadratic Form 111-112 7-5 Graphing $y - k = a(x - h)^2$ 113-114 Quadratic Functions 7-6 115-116 7-7 Writing Quadratic Equations and Functions 117-118 Variation and Polynomial Equations 8-1 Direct Variation and Proportion 119-120 8-2 Inverse and Joint Variation 121-122 8-3 **Dividing Polynomials** 123-124 8-4 Synthetic Division 125-126 8-5 The Remainder and Factor Theorems 127-128 8-6 Some Useful Theorems 129-130 8-7 Finding Rational Roots 131-132 8-8 Approximating Irrational Roots 133-134 8-9 Linear Interpolation 135-136

9	Anal	ytic Geometry	
	9-1	Distance and Midpoint Formulas	137-138
	9-2	Circles	139-140
	9-3	Parabolas	141-142
	9-4	Ellipses	143-144
	9-5	Hyperbolas	145-146
	9-6	More on Central Conics	147-148
	9-7	The Geometry of Quadratic Systems	149-150
	9-8	Solving Quadratic Systems	151-152
	9-9	Systems of Linear Equations in Three Variables	153-154
10	Ехро	onential and Logarithmic Functions	
	10-1	Rational Exponents	155-156
	10-2	Real Number Exponents	157-158
	10 - 3	Composition and Inverses of Functions	159-160
	10-4	Definition of Logarithms	161-162
	10-5	Laws of Logarithms	163-164
	10-6	Applications of Logarithms	165-166
	10-7	Problem Solving: Exponential Growth and Decay	167-168
	10-8	The Natural Logarithm Function	169-170
11	Sequ	uences and Series	
	11-1	Types of Sequences	171-172
	11-2	Arithmetic Sequences	173-174
	11 - 3	Geometric Sequences	175-176
	11-4	Series and Sigma Notation	177-178
	11-5	Sums of Arithmetic and Geometric Series	179-180
	11-6	Infinite Geometric Series	181-182
	11-7	Powers of Binomials	183-184
	11-8	The General Binomial Expansion	185-186
12	Triar	ngle Trigonometry	
	12-1	Angles and Degree Measure	187-188
	12-2	Trigonometric Functions of Acute Angles	189-190
	12-3	Trigonometric Functions of General Angles	191-192
	12-4	Values of Trigonometric Functions	193-194
	12-5	Solving Right Triangles	195-196
	12-6	The Law of Cosines	197-198
	12 - 7	The Law of Sines	
	12-8	Solving General Triangles	
	12-9	Areas of Triangles	203-204
		1000000 10000000	

13	Trigo	onometric Graphs; Identities	
	13-1	Radian Measure	205-206
	13-2	Circular Functions	207-208
	13-3	Periodicity and Symmetry	209-210
	13-4	Graphs of the Sine and Cosine	211-212
	13-5	Graphs of the Other Functions	213-214
	13-6	The Fundamental Identities	215-216
	13 - 7	Trigonometric Addition Formulas	217-218
	13 - 8	Double-Angle and Half-Angle Formulas	219-220
	13-9	Formulas for the Tangent	221-222
14	Trigo	onometric Applications	
	14-1	Vector Operations	223-224
	14-2	Vectors in the Plane	225–226
	14 - 3	Polar Coordinates	227-228
	14-4	The Geometry of Complex Numbers	229-230
	14-5	De Moivre's Theorem	231-232
	14-6	The Inverse Cosine and Inverse Sine	233-234
	14 - 7	Other Inverse Functions	235-236
	14-8	Trigonometric Equations	237–238
	.	7 L	
15	Stati	stics and Probability	
	15-1	Presenting Statistical Data	239-240
	15-2	Analyzing Statistical Data	241-242
	15-3	The Normal Distribution	243-244
	15-4	Correlation	245–246
	15-5	Fundamental Counting Principles	247-248
	15-6	Permutations	249–250
	15-7	Combinations	251-252
	15 - 8	Sample Spaces and Events	253-254
	15-9	Probability	255-256
	15-10	Mutually Exclusive and Independent Events	257–258
16	Matr	ices and Determinants	
	16-1	Definition of Terms	259-260
	16-2	Addition and Scalar Multiplication	261-262
	16-3	Matrix Multiplication	263-264
	16-4	Applications of Matrices	265-266
	16-5	Determinants	267-268
	16-6	Inverses of Matrices	269-270
	16-7	Expansion of Determinants by Minors	271-272
	16-8	Properties of Determinants	273-274
	16-9	Cramer's Rule	275-276

Symbols

{ } set	なき場
= equals or is equal to > is greater than 1 t _n nth term of a sequence 171 < is less than 1 Σ summation sign 177 a absolute value of a 1 S _n sum of the first n terms of a series 2 is equal to? 13 ! factorial 185 ≠ does not equal 13 ° degree 187 ∴ therefore 13 ' minute 187 ∅ empty set or null set ≥ is greater than or equal to ≥ is less than or equal to 2 v norm of vector v 2 233 a < x < b x is greater than a 2 241 2 2	
or is equal to or logarithm base e of x > is greater than 1 t_n mth term of a sequence 171 < is less than	
a absolute value of a 1 ∞ infinity 177 -a additive inverse of a 1 S_n sum of the first n terms of a series 179 are or opposite of a 1 S_n sum of the first n terms of a series 179 is equal to? 13 ! factorial 185 does not equal 13 \circ degree 187 therefore 13 ' minute 187 empty set 13 " second 187 or null set \overrightarrow{AB} vector \overrightarrow{AB} 223 is greater than or equal to 21 $\ \mathbf{v}\ $ norm of vector \mathbf{v} 223 is less than or equal to 21 inverse cosine 233 $a < x < b$ x is greater than a 21 or Arc cosine	
$-a \text{additive inverse of } a 1 S_n \text{sum of the first } n \text{ terms} 179$ $or \text{ opposite of } a 1 S_n \text{sum of the first } n \text{ terms} 179$ $of \text{ a series} 185$ $ \neq \text{ does not equal} 13 ! \text{ factorial} 185$ $ \neq \text{ does not equal} 13 \circ \text{ degree} 187$ $ \therefore \text{ therefore} 13 ' \text{ minute} 187$ $ \emptyset \text{ empty set} 13 " \text{ second} 187$ $ or \text{ null set} 223$ $ \geq \text{ is greater than or equal to} 21 \mathbf{v} \text{ norm of vector } \mathbf{v} 223$ $ \leq \text{ is less than or equal to} 21 \mathbf{v} \text{ norm of vector } \mathbf{v} 223$ $ a < x < b x \text{ is greater than } a 21 or \text{ Arc cosine} 233$ $ a < x < b x \text{ is greater than } a 21 or \text{ Arc cosine} 241$	
or opposite of a of a series $\frac{2}{}$ is equal to? 13 ! factorial 185 \neq does not equal 13 odegree 187 ∴ therefore 13 minute 187 ϕ empty set 13 second 187 ϕ r null set ϕ vector ϕ vector ϕ vector ϕ vector ϕ is greater than or equal to 21 ϕ norm of vector ϕ vector	
≠does not equal13°degree187∴therefore13′minute187∅empty set or null set13″second187≥is greater than or equal to21 $\ \mathbf{v}\ $ norm of vector \mathbf{v} 223≤is less than or equal to21 $\ \mathbf{v}\ $ norm of vector \mathbf{v} 223a <x </x a <x </x and less than b21 a a a a	
∴ therefore 13 ' minute 187 Ø empty set 13 '' second 187 or null set \overrightarrow{AB} vector \overrightarrow{AB} 223 ≥ is greater than or equal to 21 $\ \mathbf{v}\ $ norm of vector \mathbf{v} 223 ≤ is less than or equal to 21 $ \mathbf{v} $ norm of vector \mathbf{v} 223 $\mathbf{a} < \mathbf{x} < \mathbf{b}$ \mathbf{x} is greater than \mathbf{a} 21 \mathbf{cos}^{-1} inverse cosine 233 $\mathbf{a} < \mathbf{x} < \mathbf{b}$ \mathbf{x} is greater than \mathbf{a} 21 \mathbf{cos}^{-1} inverse cosine 241	
∅ empty set or null set 13 " second . 187 ≥ is greater than or equal to $ \mathbf{v} $ second . 223 ≥ is less than or equal to $ \mathbf{v} $ norm of vector $ \mathbf{v} $ norm of vector $ \mathbf{v} $ and less than $ \mathbf{v} $ second . 223 ≤ is less than or equal to $ \mathbf{v} $ second . 223 $ \mathbf{v} $ norm of vector $ \mathbf{v} $ second . 223 $ \mathbf{v} $ second . 223 $ \mathbf{v} $ norm of vector $ \mathbf{v} $ second . 223 $ \mathbf{v} $ second . 233 $ \mathbf{v} $ second . 233 $ \mathbf{v} $ second . 241 $ \mathbf{v} $ second . 241 $ \mathbf{v} $ second . 241	
or null set \overrightarrow{AB} vector \overrightarrow{AB} ≥ is greater than or equal to ≤ is less than or equal to 21 $ \mathbf{v} $ norm of vector \mathbf{v} 223 $ \mathbf{v} $ norm of vector \mathbf{v} 223 $ \mathbf{v} $ norm of vector \mathbf{v} 223 $ \mathbf{v} $ norm of vector \mathbf{v} 233 $ \mathbf{v} $ or Arc cosine and less than \mathbf{b}	
≥ is greater than or equal to 21 $\ \mathbf{v}\ $ norm of vector \mathbf{v} 223 ≤ is less than or equal to 21 $\ \mathbf{v}\ $ norm of vector \mathbf{v} 223 a < x < b x is greater than a 21 $a < x < b$ $a < x <$	
$ \mathbf{v} $ norm of vector $ \mathbf{v} $ 223 $ \mathbf{v} $ norm of vector $ \mathbf{v} $ 223 $ \mathbf{v} $ norm of vector $ \mathbf{v} $ 223 $ \mathbf{v} $ norm of vector $ \mathbf{v} $ 223 $ \mathbf{v} $ norm of vector $ \mathbf{v} $ 223 $ \mathbf{v} $ inverse cosine 233 $ \mathbf{v} $ or Arc cosine 241	
a < x < b x is greater than a 21 or Arc cosine and less than b	
and less than b	
and less than b standard deviation 241	
or x is between a and b	
P(a, b) point P with coordinates (a, b) 35 r correlation coefficient • 245	
x_1 $x \text{ sub } 1$	
$f(x)$ f of x or the value of f at x 47 nC_r number of combinations of n	
a^n nth power of a 55 $P(E)$ probability of event E 255	
\approx is approximately equal to 75 \cap intersection 257	
± plus-or-minus sign 89 ∪ union 257	
$\sqrt[n]{b}$ <i>n</i> th root of <i>b</i> 89 \overline{A} complement of event <i>A</i> 257	
<i>i</i> imaginary unit $(i^2 = -1)$ 101 $A_{m \times n}$ matrix A with m rows 259	
$b^{1/n}$ <i>n</i> th root of b 155 and n columns	
$b^{p/q}$ qth root of the pth power 155 det A determinant of matrix A 267	
of b A^{-1} inverse of matrix A 269	

Greek letters: α , β , γ , θ , π , σ , ϕ , ω alpha, beta, gamma, theta, pi, sigma, phi, omega

Table of Measures

Metric Units Length 10 millimeters (mm) = 1 centimeter (cm) 100 centimeters) = 1 meter (m)1000 millimeters) 1000 meters = 1 kilometer (km)100 square millimeters (mm 2) = 1 square centimeter (cm 2) Area 10,000 square centimeters = 1 square meter (m²) Volume 1000 cubic millimeters (mm 3) = 1 cubic centimeter (cm 3) 1,000,000 cubic centimeters = 1 cubic meter (m³) Liquid Capacity 1000 milliliters (mL) = 1 liter (L)1000 cubic centimeters = 1 liter 1000 milligrams (mg) = 1 gram (g)Mass 1000 grams = 1 kilogram (kg)Temperature in $0^{\circ}C$ = freezing point of water degrees Celsius (°C) 100°C = boiling point of water

Control Advert No. 194	United States Customary Units	
Length	12 inches (in.) = 1 foot (ft)	
	$\frac{36 \text{ inches}}{3 \text{ feet}} = 1 \text{ yard (yd)}$	
	$\frac{5280 \text{ feet}}{1760 \text{ yards}} = 1 \text{ mile (mi)}$	
Area	144 square inches (in. ²) = 1 square foot (ft ²)	
	9 square feet = 1 square yard (yd^2)	
Volume	1728 cubic inches (in.3) = 1 cubic foot (ft^3)	
	27 cubic feet = 1 cubic yard (yd^3)	
Liquid Capacity	16 fluid ounces (fl oz) = 1 pint (pt)	
	2 pints = 1 quard (qt)	
	4 quarts = 1 gallon (gal)	
Weight	16 ounces (oz) = 1 pound (lb)	
Temperature in degrees Fahrenheit (°F)	32°F = freezing point of water 212°F = boiling point of water	

Time

60 seconds (s) = 1 minute (min) 60 minutes = 1 hour (h)