CBGS Calculus (MTH 175	& MTH	176)
Summer Work 2013-14		

Name:		_

Summer Work 2013-14 40 pts

Part 1: Equations/Expressions/Functions/Graphs

Directions:

- This assignment will be your first grade for the first nine-weeks and is due the first day class. There will be a penalty of 1 pt for each day the assignment is late.
- This is an honor code assignment. If you want to talk to someone, talk to me. If you want to talk to someone, contact your instructor at their CBGS email.
- Each problem will be worth 1 pt.
- Use a graphing calculator and get very comfortable with it.
- Show all necessary work to justify your answers. Unless you are specifically told to use the calculator, mysteriously appearing answers will be awarded ½ credit.
- If you need to do work on a separate page, make sure the problems are numbered, organized, and worked in the order of the packet. In addition, write on the printed copy "see attached work."
- All work should complete, neat, and well-organized. If your process and answer are not obvious from your work, you may lose credit.
- There are some relatively simple ideas in these pages that you may have never seen before or that you haven't seen for a while. That means that I want you to dig a little to learn how to do the problems. It will help you in the long run during the course of the year.
- 1. Write the equation of the line that passes through the points (2, -4) and (4, 2).
- 2. Write the equation of a line perpendicular to the line that contains the points (5, -1) and (2, 5), but passes through the point (-3, 6).
- 3. Solve for x: $y = \frac{2x}{x-1}$
- 4. Solve the quadratic using the quadratic formula: $2x^2 5x + 4 = 0$.

5. Use a graphing calculator to approximate <u>all</u> zeros to the polynomial equation below. Round any decimal answers to three decimal places.

$$x^3 - 2x^2 - 4x - 1 = 0$$

6. Use a graphing calculator to find the x-values of <u>all</u> of the intersection of the two equations below. Round any decimal answers to three decimal places.

$$f(x) = e^{x-1}$$
$$g(x) = x^2$$

- 7. If $f(x) = x^2 + 1$ and g(x) = 2x 5, find f[g(x)].
- 8. Factor: $6x^2 + 11x 10$
- 9. Convert to rational exponent form: $\frac{2}{\sqrt[3]{x^2}}$
- 10. Convert to radical form: $4x^{-1/2}$

11. Evaluate the trigonometric expression. Leave your answer exact (no decimals).

$$\tan\left(\frac{\pi}{3}\right) =$$

12. Evaluate the trigonometric expression. Leave your answer exact (no decimals) and in terms of π .

$$\sin^{-1}\!\!\left(\frac{\sqrt{2}}{2}\right) =$$

- 13. List all values of x on $0 \le x \le 2\pi$ such that $\sin x = 0$.
- 14. Simplify the trigonometric expression: $\frac{\sec x}{\csc x}$
- 15. Verify the following identity: $\tan x + \cot x = \csc x \cdot \sec x$

16. Find the inverse of the function: $f(x) = 2\cos(3x) - 4$

17. Rewrite the following exponential equation as a logarithmic equation:

$$2^x = 312$$

18. Rewrite the following logarithmic equation as an exponential equation:

$$\log_5 y = 4.5$$

- 19. Simplify the expression: $e^{\ln(5x-1)}$
- 20. Use properties of logarithms to completely expand the expression:

$$\ln\!\left(\frac{x^2}{2x+3}\right)$$

21. Solve the exponential equation for x. Show all steps and do not convert the final answer to a decimal.

$$4e^{3x}=100$$

22. Given a graph of some function, f(x), sketch the requested y = f(x+3)-4.

23. Expand:
$$(x+h)^2$$

24. Expand:
$$(x+h)^3$$

25. Complete the square on the following:
$$x^2 + 6x - 5$$

$$(6x^3+13x^2+x+6)\div(3x-1)$$

27. Shown below is a table of values for some function, f(x). Determine the slope of the line that passes through the values of x = 2 and x = 5.

х	y
-1	2
2	6
4	12
5	15
8	24

28. Car A passes through an intersection traveling north at a constant speed of 60 miles per hour. Fifteen minutes later, car B passes through the same intersection traveling east at 50 miles per hour. How far apart will the two vehicles be 15 minutes after car B passes through the intersection?

- (29-30) Shown below is a cone with a diameter of 10" and a height of 20".
- 29. What is the volume of the cone when it is full?

Use the formula: $V = \frac{1}{3} (area \ of \ base) (height)$

- 30. What is the diameter of the top of the water if the cone is 3/4 of the way full by height?
- 31. The disk shown has a thickness of 2 inches and a radius of 9 inches. What is the volume of the disk? Leave your answer exact and in terms of π .

32. What is the area of the figure shown below?

33. Shown below is a sketch for an in-ground swimming pool. How many cubic feet of water will it take to completely fill the pool?

(34-35) The table below shows the position and speed of an object at a given time. Use the values in the table to answer the questions that follow.

time (t) in seconds	position (s) in feet	velocity (v) in feet per second
0	0	5
1	4	8
3	8	8
5	14	2
7	12	0

- 34. Average velocity is defined as the rate of change of position. Algebraically, that becomes: $avg.veloc. = \frac{\Delta s}{\Delta t}$ or $avg.veloc. = \frac{s(t_2) s(t_1)}{t_2 t_1}$. What is the average velocity of the object on the time interval from 1 to 5 seconds?
- Average acceleration is defined as the rate of change of velocity. Algebraically, that becomes: $avg. accel. = \frac{\Delta v}{\Delta t}$ or $avg. accel. = \frac{v(t_2) v(t_1)}{t_2 t_1}$. What is the average acceleration of the object from 3 to 5 seconds?
- 36. Use the function $f(x) = \frac{x+2}{2x-1}$ to answer the following questions:
 - a. Determine the equation of any vertical asymptote(s):
 - b. Determine the equation of any horizontal asymptote(s):
 - c. If the function has a hole, give the x-value of the hole. If it does not have a hole, write "none."
- 37. Use the function $f(x) = \frac{3x+2}{3x^2-13x-10}$ to answer the following questions:
 - a. Determine the equation of any vertical asymptote(s):
 - b. Determine the equation of any horizontal asymptote(s):
 - c. If the function has a hole, give the x-value of the hole. If it does not have a hole, write "none."

$$(38-39)$$

Given the function or graph below, determine domain and range of the function. Use the calculator as needed. You may use either set notation or interval notation.

$$38. \qquad f(x) = \sqrt{2x+7}$$

Domain:

Range:

39.
$$f(x) = \frac{1}{x^2 - 1}$$

Domain:

Range:

The four equations below enclose a region. Sketch the functions on the graph provided below 40.

$$f(x) = x^2 + 2$$

$$x =$$

$$x = 2$$

$$y = 2$$

Part 2: Graphs

For the second part of the assignment, you will be creating a "library of functions" for the equations below (unless you already have created one from a previous course). To create the library of functions, use one sheet of graph paper, quartered, 4 graphs per side. Each graph should be titled by its name, its equation, and other pertinent information (slope, intercepts, asymptotes, period, domain, range, etc...).

This will not be taken for a grade, but is content you will be expected to reference throughout the year.

1. vertical line x = h (graph an example of, for example x = 2)

2. horizontal line y = k (graph an example of, for example y = -3)

3. linear f(x) = x

4. absolute value f(x) = |x|

5. quadratic $f(x) = x^2$

6. cubic $f(x) = x^3$

7. quartic $f(x) = x^4$

8. sine function $f(x) = \sin x$

9. cosine function $f(x) = \cos x$

10. tangent function $f(x) = \tan x$

11. exponential function $f(x) = a^x$ (graph an example of, for example $y = 2^x$)

12. logarithmic function $f(x) = \log_a x$ (graph an example of, for example $y = \log_a x$)

13. circle $x^2 + y^2 = r^2$ and $(x - h)^2 + (y - k)^2 = r^2$ (consider graphing $(x - 2)^2 + y^2 = 25$)

14. square root $f(x) = \sqrt{x}$

15. inverse $f(x) = \frac{1}{x}$