

STEM LEADERS CODING ACTIVITY MAT

Thank You FOR YOUR SUPPORT!

Hi STEM lovers!

- I am currently an **enrichment & technology** teacher for grades 1-4 in New Jersey. I've also been a homeroom and special education teacher.
- I have a 3.5-pound teacup Yorkie
- My family is from Greece, Switzerland & Canada
- I was so **lost** when I was placed into a new position teaching **350 students** a week in five different grade levels, this led me to create & share my own resources.
- I hope your students benefit from these activities just as much as mine do!
- I love to see your students using these activities. Feel free to tag me in photos on social media @MissTechQueen!

Thank you for supporting my store! I am so grateful you trusted me to be a small part of your classroom. Let incredible things happen in your classroom with STEM!

FOLLOW ME FOR UPDATES & TECH TIPS!

VIEW MY WEBSITE

YOU MAY LIKE THESE ENGAGING RESOURCES!

CLICK on each picture to learn more!

EVERY NEW ACTIVITY IS 50% OFF FOR 24 HOURS!

This hands-on activity is a great way to teach students how to program various robots (Bee Bot, Sphero, Robot Mouse, Dash). This can be used with robots that can move on a floor. Create a mat or free maze. Program your robot with directions to allow it to move along the mat.

Set Up Mat

- Print photo squares there are many options (about 16 make one average sized mat)
 - *be careful when printing unselect *fit to page* to print photos in their current size 6x6 in for larger robots (Dash, Bee Bot)
 - For smaller robots Sphero, Robot Mouse select scale & print at 80% (5 x 5 in)
- Cut around black border to remove excess white on page. Leave the black border.
- Arrange photos in a mat 3 or 4 squares across (or more you decide!) For extras, print blank squares.

Place the "start here" square at the top of the mat - You can duplicate the sample photo or arrange the

squares in your own way - you can vary or make two mats as well

- Tape the back of the photos together, so the tape is not visible
- Laminate the entire mat to ensure pieces stay together

Maze

- Print the activity squares. Laminate & cut all individually. Leave them loose.
- Allow students to move the pieces around individually to create their own mazes on the floor. Use Keva Planks, popsicle sticks, Legos, or other items to create a path for the robot. Add the activity squares to the maze.
- · They can act as targets around the floor that the bot must reach

Task Cards

- Print and laminate photo task cards
- Place photo task cards in a pile next to the mat for students to select during the activity - great for teamwork!

Code Cards: Print & use code cards so students can get a visual

Optional Sheets: Print response sheets back/front for more code spaces

SET UP

LAMINATE

TAPE

READY TO GO MAT

ACTIVITY

Ready To Go Mat

- Use this mat with your favorite classroom robot
- After instructing students how to use the robot, introduce the mat
- Students can work alone or with a partner
- Students will start by placing the robot on the *start here* spot
- Students will pick a task card from the pile (2 VERSIONS)
- This card will instruct students to program the robot to go to a specific square on the mat
- Students will program the directions for the robot use the code cards to help
- Press go and watch if the robot reaches the assigned square.
 If it does not, bring it back to the original space and try again!
- After reaching the assigned square, pick a new task card and repeat the steps above
- Continue until all task cards have been used
- Extra challenge: Add the X as squares the bot can not go over! "Bugs"

Make Your Own Mat

- Do not tape pieces together in a mat. Keep each square separate.
- Allow students to create their own maze by moving the pieces around individually.
- Provide Keva Planks, popsicle sticks, Legos, or other items to create a path for the robot. Add the activity squares to the maze.
- Students can also arrange squares loosely on a floor as targets.
- Students can create various mazes & program the robot to follow the track.

Response Sheet:

- Students can complete the response sheet to include the directions they programmed their robot to follow
- This can be used before testing the robot or as a follow up, once successful.
- Laminate/use pocket charts with dry erase markers for reuse in centers

SAMPLE MAT

Place START CARD at the top

You can arrange the photos as you wish!

SAMPLE CHALLENGE MAT

Place START CARD at the top

You can arrange the photos as you wish!

There are 24 card options!

Use X cards to fill in spots and create a BUG (challenge).
Students must avoid them.

SAMPLE MAZE

Students can create their own maze and loosely place activity squares in the maze.

Place START CARD at one end

CODE CARDS

Print for hands-on visual

RESPONSE SHEETS

Print or place in dry erase pocket charts for reusable centers

Created by:			\$ 0.0 p			
	ROBOT	MAZE				
ப்பட் Draw arrows to show the steps to your program. Test it out with your robot!						
While programming	my robot Tlearned					

while programming my robol I learned _

Created by:	
,	

MY PROGRAM

Draw arrows to show the steps to your program. Test it out with your robot!

While programming my robot I learned _____

Created by:CONTINUED						

Name:	
What is your favorite part about coding? What is difficult about coding?	
Draw arrows to show your code below:	
]
	1
	echQueen

ACTIVITY SQUARES

Print, cut and tape together to form mat You can also leave separate as targets

*Don't forget to check print sizes for your specific bot!

Add the X as a spot students must avoid when programming the bot.

TASK CARDS

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

THE WORLD'S FIRST
COMPUTER
PROGRAMMER

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

A PHYSICT AND
DEVELOPED THE THEORY
OF RELATIVITY

PROGRAM THE ROBOT TO REACH THE PERSON WHO

INVENTED AND PATENT
THE 1ST WORKING
TELEPHONE

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

THE FOUNDER OF MICROSOFT

PROGRAM THE ROBOT TO REACH THE PERSON WHO

DEVELOPED THE THEORY OF EVOLUTION

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

AN ASTRONOMER AND PROPOSED THE HELOPCENTRIC SYSTEM

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

AN ASTRONOMER AND DEVELOPED HIS OWN VERSION OF A

PROGRAM THE ROBOT TO REACH THE PERSON WHO

INVENTED AND
INNOVATED THE
MODERN TRAFFIC
SIGNAL

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

A PHYSICIST AND
DEVELOPED THE LAWS
OF MOTION

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

A CHEMIST AND DISCOVERED PRINCIPLES OF VACCINATION

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

A COMPUTER SCIENTIST AND MEMBER OF NASA APOLLO TEAM

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

CHEMIST AND
CONDUCTED RESEARCH
ON RADIOACTIVITY

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

AN INVENTOR AND
CONTRIBUTED TO MODERN
ELECTRICITY SUPPLY
SYSTEM

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

A CHEMIST AND OZONE RESEARCHER

PROGRAM THE ROBOT TO REACH THE PERSON WHO

DEVELOPED MORSE CODE TELEGRAPH SYSTEM

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS A

THEORETICAL PHYSICIST
AND WORKED ON THE
PHYSICS OF BLACK HOLES

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

THE FOUNDER OF APPLE

PROGRAM THE ROBOT TO REACH THE PERSON WHO

CONTRIBUTED TO THE INVENTION OF THE LIGHTBULB

hUlueen

PROGRAM THE ROBOT TO REACH THE BROTHERS WHO

INVENTED THE FIRST SUCCESSFUL AIRPLANE

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

A ROCKET SCIENTIST AND WORKED ON CENTAUR TECHNOLOGY AT NASA

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

AN EXPERIMENTAL
PHYSICIST AND
CONTRIBUTED TO
NUCLEAR PHYSICS

PROGRAM THE ROBOT TO REACH THE PERSON WHO

PERFORMED
PIONEERING WORK IN
THE FIELD OF
COMPUTING

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

A COMPUTER
SCIENTIST AND
INVENTED ONE OF THE
FIRST LINKERS

PROGRAM THE ROBOT TO REACH THE PERSON WHO IS

A MEDICAL SCIENTIST AND CONTRIBUTED TO BIOTECHNOLOGY

PEOPLE KEY

STONE OF THE PROPERTY OF THE P

- ADA LOVELACE BRYON: THE WORLD'S FIRST COMPUTER PROGRAMMER
- ALBERT EINSTEIN: A PHYSICT AND DEVELOPED THE THEORY OF RELATIVITY
- ALEXANDER GRAHAM BELL: INVENTED AND PATENT THE 1ST WORKING TELEPHONE
- BILL GATES: THE FOUNDER OF MICROSOFT
- CHARLES DARWIN: DEVELOPED THE THEORY OF EVOLUTION
- COPERNICUS: AN ASTRONOMER AND PROPOSED THE HELOPCENTRIC SYSTEM
- GALILEO: AN ASTRONOMER AND DEVELOPED HIS OWN VERSION OF A TELESCOPE
- GARRETT MORGAN: INVENTED AND INNOVATED THE MODERN TRAFFIC SIGNAL
- ISSAC NEWTON: A PHYSICIST AND DEVELOPED THE LAWS OF MOTION
- LOUIS PASTEUR: A CHEMIST AND DISCOVERED PRINCIPLES OF VACCINATION
- MARGARET HAMILTON: A COMPUTER SCIENTIST AND MEMBER OF NASA APOLLO TEAM
- MARIE CURIE: CHEMIST AND CONDUCTED RESEARCH ON RADIOACTIVITY

- NIKOLA TESLA: AN INVENTOR AND CONTRIBUTED TO MODERN ELECTRICITY SUPPLY SYSTEM
- MARIO MOLINA: A CHEMIST AND OZONE RESEARCHER
- SAMEUL MORSE: DEVELOPED MORSE CODE TELEGRAPH SYSTEM
- STEPHEN HAWKING: A THEORETICAL PHYSICIST AND WORKED ON THE PHYSICS OF BLACK HOLES
- STEVE JOBS: THE FOUNDER OF APPLE
- THOMAS EDISON: CONTRIBUTED TO THE INVENTION OF THE LIGHTBULB
- ORVILLE AND WILBUR WRIGHT: INVENTED THE FIRST SUCCESSFUL AIRPLANE
- ANNIE EASLEY: A ROCKET SCIENTIST AND WORKED ON CENTAUR TECHNOLOGY AT NASA
- CHIEN-SHIUNG WU: AN EXPERIMENTAL PHYSICIST AND CONTRIBUTED TO NUCLEAR PHYSICS
- EVELYN BOYD: PERFORMED PIONEERING WORK IN THE FIELD OF COMPUTING
- GRACE HOPPER: A COMPUTER SCIENTIST AND INVENTED ONE OF THE FIRST LINKERS
- HAYAT SINDI: A MEDICAL SCIENTIST AND CONTRIBUTED TO BIOTECHNOLOGY

THIS RESOURCE MATCHES WELL WITH

Terms Of Use

- All rights reserved by author. This resource is to be used by the original purchaser only.
- Copying for more than one teacher, or for an entire school or district is prohibited.
- This resource may **not** be distributed or displayed digitally for public view, uploaded to school websites, distributed via e-mail, or submitted to another website.
- Failure to comply is a copyright infringement and a violation of the Digital Millennium Copyright Act (DMCA).
- You can print this for educational use.
- Purchase is intended for single, individual use. ©Miss Tech Queen®

Clip Art & Font Credity

