Name: ______Period:

Standing Waves

We know that waves move. Yet waves can be trapped between *boundaries*. These are known as *standing waves*.

A jump rope is a good example of a standing wave.

To keep a standing wave going it needs to have a *driven end*: an end that gives energy to the wave. Jump ropes have *two* driven ends.

The places of no amplitude are called *nodes*. The places of greatest amplitude are called *anti-nodes*.

Standing waves are TRAPPED between boundaries, so we show both the crest and the trough in the same place at the same time. In reality, though, it alternates: going up and down, just like a jump rope.

In a standing wave, each anti-node is onehalf of a wavelength.

1 Anti-node = $(1/2)\lambda$

2 Anti-nodes = λ

In a *moving* wave, the wave moves away from what drives it. Waves that move away from a rock in a pond are driven by the force of the rock pushing through the water.

A graph of the fundamental wave for this distance.

The largest wave that can be produced in a certain distance is called the *fundamental*. It is one-half of one wavelength long.

Harmonics

Harmonics are waves that are whole number multiples of the fundamental. *Harmonics* have nodes at the boundaries. Harmonics sound louder, keep their energy longer, and take less energy to produce.

First 5 Harmonics of a Vibrating String

Examples of Fundamentals and their Harmonics						
$H_1(f_f)$	H_2	H_3	H_4	H_5		
1 Hz	2 Hz	3 Hz	4 Hz	5 Hz		
2 Hz	4 Hz	6 Hz	8 Hz	10 Hz		
5 Hz	10 Hz	15 Hz	20 Hz	25 Hz		
10 Hz	20 Hz	30 Hz	40 Hz	50 Hz		

Ex. Find the frequency of the third harmonic (H₃) of a 4 Hz fundamental.

$$f_f = 4 \text{ Hz}$$
 $f_{Hx} = f_f(X)$ $X = 3$ $f_{H3} = (4 \text{ Hz}) \times (3)$ $f_{H3} = (12 \text{ Hz})$

Ex. If the fifth harmonic has a frequency of 55 Hz, find the fundamental frequency.

$$\begin{array}{|c|c|c|c|}\hline f_{HS} = 55 \text{ Hz} \\ X = 5 \\ f_{f} = ? \\ \hline \end{array} \quad \begin{array}{|c|c|c|c|c|}\hline f_{Hx} = f_{f}(X) \\ f_{f} = f_{Hx}/X = 55 \text{ Hz/5} \\ f_{f} = 11 \text{ Hz} \\ \hline \end{array}$$

Non-harmonic waves can be forced into boundaries, too. The wave will to die out quickly, sound quieter (if a sound wave), and take more energy to produce.

Copyright © 2004, C. Stephen Murray

1	Boundary

- 2. Standing wave
- 3. Harmonic
- 4. Fundamental
- 5. Driven end
- 6. Node
- 7. Anti-node

- A. The part that is moved to give energy.
- B. Where wave's amplitude is greatest.
- C. Where the wave has no motion.
- D. A wave that is a multiple of another wave.
- E. A wave that is trapped within boundaries.
- F. The first harmonic of a standing wave, equal to 1/2 its wavelength.
- G. A place that limits a wave's motion.

A string has a fundamental of 15 Hz, find the frequency of harmonic 3 (H_3) .

If 20 Hz is the fundamental, find H₆.

If 35 Hz is H₇, what is the fundamental frequency?

If a wave's frequency is 25 Hz, what is its period?

If a wave's period is 0.1 sec, find its frequency.

If a wave has a frequency of 50 Hz and a wavelength of 2 meters. Find its speed.

A wave's velocity is 20 m/sec with a wavelength of 40 m. What is it's frequency?

One cycle: A to ____; C to ____; F to ____.

Half cycle: H to ____; J to ____; B to ____.

Two cycles: B to ____; D to ____; E to ____.

Total cycles:

Wavelength:

5 Amplitude:

The following table shows the frequencies of the first 5 harmonics of different strings. Fill in the blank spaces.

1	2	3	4	5
4 Hz				
6 Hz				
	4 Hz			
		36 Hz		
			44 Hz	

A fellow student shows you the frequencies of four harmonics of a string. Which one would you question and why? Frequencies: 12 Hz; 24 Hz; 29 Hz; 48 Hz

Find its period:

What harmonic is this?

Mark the nodes and anti-nodes.

Find the fundamental frequency:

3rd harmonic frequency:

