

Spiral Review - Monday - December 7, 2015

1.) Part A: Draw a tape diagram to represent $\frac{5}{9}$.

Part B: Decompose $\frac{5}{8}$ into the sum of unit fractions.

Part C: Decompose $\frac{5}{8}$ another way using an addition

Part D: Now write $\frac{5}{8}$ as a multiplication sentence with a whole number and a unit fraction.

2.) Part A: Draw a tape diagram to represent $\frac{9}{6}$.

Part B: Decompose $\frac{9}{6}$ into the sum of unit fractions.

Part C: Decompose $\frac{9}{6}$ another way using an addition sentence.

Part D: Now write $\frac{9}{6}$ as a multiplication sentence with a whole number and a unit fraction.

3.) Rewrite $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$ as a multiplication expression.

4.) Rewrite 3 x $\frac{1}{7}$ as the sum of unit fractions.

5.) Use the model below.

Part A: Name the fractional part shaded.

Part B: Decompose the shaded fraction into smaller units using the area model in Part A. Express the equivalent fractions in a number sentence using multiplication. (Draw horizontal lines on the model. Remember what you do to the denominator, you do to the numerator.)

6.) Complete the number sentence. You may use a tape diagram or area model to help you.

7.) Circle all of the fractions that are greater than 1 whole.

8.) Write the number that completes the statement of equivalent fractions.

$$\frac{\cancel{3}}{\cancel{5}} = \frac{\cancel{3}}{\cancel{15}}$$

9.) Explain why the fractions in #8 are equivalent.

10.) Circle the two fractions that are equivalent to each other.

11.) Draw an area model to prove that the two fractions you chose for #10 are equivalent.

12.) Megan wrote the following equivalent fractions but she thinks she made a mistake. If the equivalent fractions are correct, give the pair a check. If the fractions are incorrect, change the fraction on the right to make it correct.

13.) A loaf of bread was cut into 6 equal slices. Each of the 6 slices was cut in half to make thinner slices for sandwiches.

Mr. Beach used 4 slices. His daughter said "Wow you used $\frac{2}{6}$ of the loaf!" His son said "No, he used $\frac{4}{12}$." Who is correct and why? (Draw a tape diagram to help solve.)

14.) Mrs. Colley drew a rectangle that is 6 inches long and had a perimeter of 18 inches What is the width of the rectangle? (Draw a picture of a rectangle to help you solve.)

15.) What is the quotient of $48 \div 37$ Show your work.

16.) Find the product. 254 x 3

17.) Mrs. Farrell's class collected 1,256 Box Tops. Mrs. Buford's class collected 1,526 Box Tops. Mis. Butold

A. Which class collected the most Box Tops?

1,526

B. Write a comparison statement using <, >, or = to

support your answer.

1,256 < 1,526

C. Draw a place value chart to compare the two numbers.

1.) Draw an area model to show the decompositions represented by the number sentences below. Represent the decomposition as a sum of unit fractions and as a multiplication sentence.

$$\frac{1}{3} = \frac{2}{6}$$

Sum of unit fractions:

Multiplication sentence:

- 2.) The value of the digit 4 in the number 42,780 is 10 times the value of the digit 4 in which number?
- 34,651
 - **b** 146,703
 - © 426,135
 - @ 510,400
- 42 780

3.) Decompose $\frac{3}{4}$ as the sum of the unit fractions.

4+4+4=3

Draw a number line to show $\frac{3}{4}$

4.) Which numbers make the comparison true?

Select the two correct answers.

- 27,759
- 28,744
- © 26,773
- d 27,568
- **3** 27,836
- 5.) Write the number that completes the statement of equivalent fractions.

