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Speaking Graphically: An Introduction to Some
Newer Graphing Techniques

David L Streiner, PhD1

The vast majority of graphs appearing in the psychiatric literature consist of the traditional line graphs,
histograms, and bar charts. Over the past decade, new graphing techniques have appeared which make the data
easier to read and which present much more information than simply group means and confidence intervals. These
methods include horizontal bar charts, dot charts, stem-and-leaf plots, box plots, and notched box plots. This paper
describes these new techniques, as well as older ones, such as smoothing, and warns against using some of the
options found in graphics programs: 3-dimensional (3-D) graphs, stacked graphs, and pie charts.

(Can J Psychiatry 1997;42:388–394)
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In the 1630s, René Descartes developed a radically new way
of displaying data, a technique that we now eponymously

call Cartesian coordinates. As it is currently used, an inde-
pendent variable (IV), such as time of day, is plotted along a
horizontal axis (the X-axis, or abscissa), and a point is placed
corresponding to the value of the dependent variable (DV),
such as melatonin level, on the vertical axis (the Y-axis, or
ordinate). If we now connect the points, the result is aline
graph, which shows how changes in one variable relate to
changes of the other: in this case, how the melatonin level
varies as a function of time. Another version of the graph,
used mainly but not exclusively when the IV consists of
categories, has a vertical bar, extending upwards from the
X-axis, to indicate the value of the DV. This is called abar
chart if the IV is a noncontinuous, categorical variable, such

as diagnosis, treatment group, or sex, and the bars have spaces
between them; it is referred to as ahistogramif the IV is
continuous (for example, age) and the bars abut one another.
(For more details about drawing these graphs, see Norman
and Streiner [1].)

This new way of looking at the world was so revolutionary
that not much happened for the next 300 years or so. If
Descartes were still around, he would have no difficulty
recognizing the vast majority of graphs that appear in psychi-
atric journals. Over the past 2 decades, however, a number of
new techniques have been developed and are beginning to
appear in the literature and in the output of many statistical
computer programs. Some of these methods, such as stem-
and-leaf plots or box plots (which we will describe shortly)
are “simply” attempts to convey more aspects of the data than
do conventional graphs or to present them in more under-
standable ways (2); other methods, like horizontal bar charts,
are based on empirical studies of human perception and try
to minimize errors that people make in reading line and bar
charts (3). The purpose of this paper is to introduce some of
these newer methods, as well as to rail against some common
but erroneous “improvements” in the traditional techniques,
alterations attributable mainly to the wide availability of
computerized graphing packages that are ill-designed for
scientific work.
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Variations on a Bar Chart

Bar charts seem so simple, elegant, and straightforward
that there doesn’t seem to be too much room left for improve-
ment. What could be easier than a graph where the heights of
the bars are proportional to some value? Actually, there are a
number of ways to improve the picture. First, as we discussed
in a previous article (4), adding error bars showing the width
of the 95% confidence interval gives some indication of the
precision of our estimate and allows us to do “eye-ball” tests
of the data. Another change doesn’t quite turn the world on
its head, only on its side. Drawing the graph so that the bars
project horizontally from the left side accomplishes 2 things.
First, a traditional, vertical bar chart can get very messy below
the axis if there are many groups; the legends under each bar
can run into each other, unless they are turned 45 or
90 degrees, which then makes reading them difficult. Placing
the legends on the left side of the chart eliminates this prob-
lem, although at the expense of leaving less room on the page
for the bars themselves. The second advantage ofhorizontal
bar chartsis based on research about perception. People can
more  accurately gauge  the  magnitude of the  differences
among the bars if the numerical axis is on the bottom than if
it is on the side (3).

Another variation of the horizontal bar chart is the hori-
zontaldot chart, devised by Cleveland (3). Instead of drawing
the entire bar, a large dot is placed at the end, often with
smaller dots leading up to it, as in Figure 1, which shows the
relative use of different psychological tests. If there aren’t too
many data points (a number determined more by esthetics
than by counting), the smaller dots can be omitted. When the
graph has a meaningful zero point on the left, then the smaller
dots should start at the axis and end at the large dot. If the left
axis does not begin at zero, however, the visual impression
could be misleading, since the relative lengths of the lines do
not reflect true ratios. For example, if all the values in the
graph fall between 310 and 350, you would not want to start
the graph at zero, since most of the graph will be empty, and
all the end points would cluster near each other, making it
difficult to detect differences among them. It would make
more sense to start the axis at 300, but a line from the base of
300 to a score of 330 would appear on the graph to be 3 times
as long as the line going from 300 to 310, even though the
difference between 310 and 330 is less than 7%. To minimize
this misleading visual effect, the small dots should start at the
arbitrary base, go through the large  dot, and end at  the
right-hand side of the graph.

Histograms, which are used primarily to display continu-
ous data, usually have between 5 and 15 bars, mainly for
esthetic reasons (1). This means that if the variable we are
plotting, like age, has more than this many values, we have
to combine categories, such as plotting the number of people
who fall within each decade, rather than each year. But this
involves a trade-off; what we gain in appearance we lose in
information. The graph may tell us that there are, for instance,
47 people in the sample between the ages of 30 and 39, but
we cannot tell how many were exactly 30, how many were
31, and so on. (Of course, a very large peak at 39 may alert
us to the fact that some people are incapable of counting
above this number, especially when it’s their years on this
planet that they’re reporting.)

Figure 1. A horizontal dot chart.

Table 1. A stem-and-leaf plot of the ages of 69 people

0 1 1 2 3 3 7 8

1 0 0 1 2 4 4 4 5 8 9

2 0 2 2 3 3 4 5 7 7 8 9

3 1 3 4 5 5 6 7 8 9 9 9 9 9 9

4 2 3 3 5 6 6 7 8

5 0 1 1 2 4 5 5 7 9

6 0 0 2 3 5 5 6

8 4

9 8

10 4
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To eliminate this problem, Tukey (2) devised a form of a
horizontal histogram called astem-and-leaf plot. Continuing
with our example of age, let’s take a look at Table 1. The
left-hand column, which is thestem, indicates the decade (that
is, the most significant digit, both mathematically and, for
age, psychologically), so that the row which has 0 in this
column reflects the number of people between birth and 9
years of age, the row with a 1 in the left column counts the
number of people between 10 and 19, and so on. Then, the
numbers to the right, theleaves, are the least significant digits
of all people in that decade. Reading across the first row, we
see: 0 1123378, which means that there are 2 children who
are 1 year old, one 2-year-old kid, two 3-year-olds, and one
child each ages 7 and 8. If each digit takes up the same amount
of space (you should not do this with a “smart” word proces-
sor, which uses proportional spacing and assigns more room
to an 8 than to a 1), then the result is both a horizontal
histogram, as well as a table preserving the original data. If
the sample is very large, resulting in very long strings of
numbers, you can divide each stem in half; that is, you can
have 2 rows of 1s, for instance, with the top row reserved for
ages 10 to 14, and the bottom for 15 through 19.

Over the years, there have been a number of refinements
to the stem-and-leaf plot that have appeared in various com-
puter programs. For example, to the left of the stem, you can
indicate thecumulative percentageof people: for the first
row, it would be the percent of people who fall in that range;
for the second row, it would be the percent of people who fall
in the first and second rows; and so on. This makes it easy to
determine where the 50th percentile is, or where the 5th and
95th percentiles are. To make life even easier, some programs

put an asterisk next to the stem that contains the 50th percen-
tile; how much more can a person ask for?

Stem-and-leaf plots haven’t shown up too much in articles,
possibly because they aren’t as pretty as histograms. You will,
however, encounter them in almost every major statistical
program, such as Minitab, SPSS, SAS, and BMDP.

Before we leave the area of histograms, bar charts, and
their variants, let me inveigh against 3 “modifications” that
should be avoided: 3-D graphs, stacked graphs, and pie charts.
Computerized graphics programs have become extremely
popular, rivalling computerized poker or solitaire as ways of
keeping jaded academics amused. Unfortunately, they’re de-
signed for people (who shall remain unidentified, but who
usually have MBA following their names) for whom style
takes precedence over substance.

It’s easy to see the allure of 3-D graphs: you can fool
around with the depth and colour of the shading and pretty
them up in other ways. Unfortunately, they are as misleading
as they are “sexy.” Take a look at Figure 2; what is the value
of the middle bar? The answer is 60, but your eye is drawn to
the uppermost edge, which is closer to 70. The greater the 3-D
effect, the more your eye will be deceived. So, use 2-dimen-
sional graphs in articles and talks, and save those 3-D graphs
for when you’re making a budget presentation to administra-
tion (oops, we let slip who the nameless ones are).

Another variant of bar charts regrettably made possible by
graphics programs and popularized by newspapers and maga-
zines is thestacked bar chart, which is shown in Figure 3. At
first glance, this appears to be a useful graph, since we can
present, in this case, 5 different values for each of the 3

Figure 2. A 3-D bar chart. Figure 3. A stacked bar chart.
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groups; quite a lot of information in one figure. The difficulty
arises when we try to compare categories across groups.
There is no problem with the bottom category (single), since
the base is the same for all groups and we can easily tell for
which group that segment of the graph is highest. But are the
numbers of widowed people the same in all 3 groups, and if
not, in which group are they highest? Now the comparison is
more difficult. Because the lower 2 categories have different
numbers in each group, the bottom of the widowed segments
start at different places for each group. We have to mentally
move them to a common baseline and then compare the
heights. This becomes progressively more difficult to do as
the number of groups and the number of categories increase.
Again, it looks sexy, but it can be quite misleading.

A similar problem exists with pie charts. A single pie chart,
showing the proportion of people in different categories, is
fine and can be quite informative. The problem begins as soon
as we try to compare 2 pie charts, as in Figure 4. If comparable
segments in each pie start with one edge of the wedge exactly
at the 12 o’clock position, and extend in the same direction
(that is, clockwise or counterclockwise), then, like the bottom
segment of a stacked bar chart, we can compare them without
too much difficulty. If they begin at different places in their
respective pies, however, as with the segment labelled “Wid-
owed,” then it becomes almost impossible to see if their areas
are equal or not. Some people try to get around this problem
by also printing out the actual number or percent of cases
inside the wedges. This simply turns the graph into 2 funny-
looking, round tables, which is redundant: just present the
table and make the journal editor happy, since it costs less
money to print a table than a graph. The bottom line is, if you
need numbers in order to make the graph tell its story, then

either you don’t need a graph or you’re using the wrong kind
of graph (such as stacked bar charts or pie charts).

Box Plots and Notched Box Plots

If we use a bar chart to display the mean age of people in
a treatment and a control condition, for example, we are
showing only one piece of data per group—the mean (or
median, if the data are ordinal or highly skewed). We can go
a step further and add bars indicating the confidence intervals,
but we are still showing only a small amount of the data. Can
we convey more information about the groups and still keep
the graph readable? Obviously, the answer is yes, or we
wouldn’t have bothered to ask the question. Let’s return to
the data in Table 1, which lists the ages of 69 people. To begin
with, instead of starting the bar at the bottom of the graph and
extending it upward to the mean, let’s draw a short horizontal
line at the median of the group (for those who have forgotten,
the median is the value that divides the group, so that half the
people have higher values and half have lower ones). In this
case, the median age is 37; 34 people are younger and 34 are
older. Next, let’s look at those 34 more mature (the euphe-
mism for “older”) people and find the median for them. This
is at age 51, so we draw another short, horizontal line (which
we call the upper quartile, or QU) at this level. Finally, we’ll
do the same thing for the younger 50% of the people, drawing
a line for the lower quartile (QL) at their median, which is at
age 19.5. We have thus divided the group into fourths, with
roughly an equal number of people in each quarter: 25%
above QU; 25% between the median and QU; 25% between
the median and QL; and the remaining 25% below QL. If we
now draw vertical lines joining the upper and lower quartiles,
we’ll end up with a rectangle, which is labelled “Box” in
Figure 5. What we’ve accomplished so far is to display the
median of the group (37 years); where the upper quartile falls
(age 51); where the lower quartile is (age 19.5); and what the
interquartile range (IQR) is, namely, the difference between
the upper and lower quartiles (that is, 51 minus 19.5, or 31.5).
By definition, the IQR includes the middle 50% of the sub-
jects. (The IQR, by the way, is the measure of variability used
with the median, in the same way that the standard deviation
is used with the mean.)

This has increased the informational value of the chart
quite a bit, but we can go even further by drawing “whiskers”
above and below the rectangle. Based on some arcane math
which we won’t bother to elaborate on here but which is
explained in more detail elsewhere (2), 95% of the sample
falls within the range of scores of the median ± 1.5× IQR (in
our example, that is 37 ± 47.25). By convention (and for the
sake of confusion), we don’t actually draw the lines at these
levels; the upper line is drawn to correspond to the largest
actual value in our data that is below this higher limit, and the
lower line is at the smallest actual value above the lower limit.
The upper limit is 37 + 47.25, or 84.25 years. If we go back

Figure 4. Pie charts.
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to Table 1, the highest age in our data below 84.25 is 84, so
that’s where the line is drawn. The lower limit is 37 – 47.25,
or –10.25 (obviously averyyoung person), and the first real
value above this is 1, so that’s where we draw the lower line.
In the somewhat convoluted language of box plots, those
horizontal lines at the ends of the whiskers are called theinner
fences. Next, we define (but don’t draw) theouter fences,
which are 3.0 times the IQR, and put some symbol, such as a
circle, for each subject whose score falls between the inner
and outer fences. These cases (there were 2 in our example)
are calledoutliersand have scores that are below the 5th or
above the 95th percentile for that group.Extreme outliers,
whose scores fall below the 1st or exceed the 99th percentile
and lie outside the outer fence, are identified with a different
symbol, such as an asterisk; we didn’t have any in our data
set. (Just to confuse you even more, every computer program
uses a different set of symbols or even letters, but they are
usually labelled.) Some computer programs even print the
case numbers of the outliers and extreme outliers. This makes
it extremely easy to identify subjects with very deviant scores,
so that the researcher can determine if the data are real or
reflect a coding or data entry error.

If more than one group is shown on a graph, we can display
even more information: the sample size. This is useful for a
number of reasons: estimates of the mean and standard devia-
tion are usually more accurate when based on larger samples,

and if groups do not differ, it may be due to a lack of power
caused by too few subjects (5). Seeing the differences in
sample size across the groups helps us to make these deter-
minations. The sample size is reflected by making the width
of the box proportional to the square root of the number of
subjects. The square root is used more for perceptual than for
mathematical reasons; if one group is twice the size of an-
other, drawing the box twice as wide would actually make it
look 3 or 4 times larger, since we are representing a one-
dimensional number (sample size) with a 2-dimensional fig-
ure (the box).

Even with all the information we have displayed so far, 2
important pieces are still missing: the mean and the 95%
confidence interval (CI) around the mean. We can easily
accommodate these with a variant of the box plot called the
notched box plot, which is shown in Figure 6. The point of
the notch falls at the mean, and the height of theV corre-
sponds to the 95% confidence interval, which is defined as:

whereX is the mean, SD the standard deviation, and N is the
sample size.

As you can see, box plots and notched box plots can
display a large amount of data in a small space: 1) the mean;
2) the 95% confidence interval around the mean; 3) the

Figure 5. The functional anatomy of a box plot. Figure 6. A notched box plot.

95% 1.96CI X
SD

n
= ± ×
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median; 4) the skewness of the data, by how much the mean
is displaced from the middle of the box; 5) the upper quartile;
6) the lower quartile; 7) the interquartile range, within which
50% of the subjects fall; 8) the distance between the fences,
which spans 95% of the subjects; and 9) the number and
values of outlying data points. These graphs are becoming
more common in statistical and psychological journals, and
will hopefully soon find their place in psychiatry.

Getting Rid of Those Ugly Bumps

No, we haven’t changed the focus of this article to look at
weight-loss procedures. The topic is much more mundane and
prosaic (and also much easier to accomplish): how to smooth
out graphs in order to uncover trends more easily. This
technique is used most often with measures taken repeatedly
over time, such as a person’s melatonin levels over a course
of 24 hours or the diurnal variation in subjective mood. The
problem is that any trend in the data may be obscured by errors
in measurement, errors attributable to limitations of the meas-
uring tool, normal biological variation, inaccurate recording,
and so forth. To illustrate the effectiveness of this technique,
we’ll use some data for which we know ahead of time what
we should see—the 11-year sunspot activity cycle (6).

The top part of Figure 7 shows the number of sunspots per
month, averaged over a 3-month span (that is, the first dot is
the average of January, February, and March of 1747; the

second dot is the average of the next 3 months; and so on).
The data do tend to follow a sinusoidal path, but it’s hard to
discern the pattern among all the point-to-point variability.
We’ll try to reduce some of that clutter with a technique called
moving averages. The raw data, which are plotted in the top
part of Figure 7, are in the “Number of sunspots” column of
Table 2. The next column, “Moving average 3,” is where the
smoothing begins. The first number in this column (66.0) is
the average of the first 3 numbers of the previous column
(44.2, 74.7, and 79.0); the second value (86.7) is the average
of the second (74.7), third (79.0), and fourth (106.4) raw data
points; and so on down the table. The results of this averaging
are shown in the middle part of Figure 7.

As you can see, the sinusoidal shape is more evident,
because the large fluctuations have been reduced consid-
erably. The reason is that if one data point is discrepant, its
effect is lessened by averaging it with 2 other (hopefully more
typical) values. This is readily apparent with the fifth data
point; it is 29.7, while those on either side of it are 106.4 and
92.8. In the top graph of Figure 7, it is responsible for the
sharp downward spike at the left, which has been virtually
eliminated in the middle graph. If we feel that the data are still
too “lumpy,” we can smooth them further by averaging over
5 values, which is done in the “Moving average 5” column of
Table 2 and shown in the bottom part of Figure 7. Now the
pattern appears very clearly.

Should we then average over 6 or 7 numbers? Obviously,
there is a trade-off. We can reach a point where we are
smoothing out “bumps” that represent useful data rather than
error. In fact, if we averaged over 15 numbers in this data set,
even the 11-year cycle would disappear. So, we have to rely
on our eyeball and clinical judgement to tell us when enough
is enough and when any further smoothing would result in the
loss of meaningful information. The second negative feature
is that we lose some data points. When we average 3 numbers,
we lose 2 data points; in general, if we are averagingkvalues,
we losek– 1 points. If the data set is large, this may not matter

Figure 7. The effect of moving averages.

Table 2. Average monthly sunspot activity in 3-month blocks

Year Quarter
Number of
sunspots

Moving
average 3

Moving
average 5

1749 1
2
3
4

44.2
74.7
79.0
106.4

66.0
86.7
71.7

66.8
76.5

1750 1
2
3
4

29.7
92.8
93.2
68.1

76.3
71.9
84.7
72.6

80.2
78.0
68.1
73.3

1751 1
2
3
4

56.6
55.9
49.9
31.9

60.2
54.1
45.9
44.6

64.7
52.5
49.3
48.5
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too much, but if we start off with only 15 points and average
over 4 values, we would lose 20% of the data.

Summary

In the past, we were fairly limited in the number of ways
in which we could present our findings. Newer techniques
allow us to show the data so that they are less prone to
misinterpretation (the horizontal and dot charts); to minimize
the amount of data which are lost through graphing (stem-
and-leaf plots); to present a more complete description of the
data (box plots and notched box plots); and to reduce the
visual clutter due to variation (smoothing). Especially since
many statistical programs can output these graphs directly

into drawing programs, psychiatric researchers should learn
to use them and, in many cases, replace the more traditional
but less informative bar and line charts.
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Résumé

La très grande majorité des graphiques figurant dans la littérature psychiatrique est composée des classiques
graphiques linéaires, d’histogrammes et de diagrammes à barres. Au cours de la dernière décennie, de nouvelles
techniques graphiques sont apparues, facilitant ainsi la lecture des données et présentant beaucoup plus
d’information que de simples moyennes de groupes et des intervalles de confiance. Ces méthodes comprennent
les diagrammes à barres horizontales, les diagrammes de dispersion, les schémas arborescents, les tracés en boîte
et les tracés en boîte crénée. Dans cet article, on décrit ces nouvelles techniques, ainsi que d’autres, plus
anciennes, comme le lissage, et on met le lecteur en garde contre l’utilisation de certaines options des programmes
graphiques : graphiques tridimensionnels (3D), graphiques empilés et camemberts.
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