Solving Systems of Equations and Inequalities Graphically Method:

- > Identify the type of equation you will be graphing (linear or quadratic)
- > Draw the graph of each equation/inequality on the <u>same</u> coordinate plane.
- > The point/points of intersection of both equations (x,y) is the solution. Likewise, with inequalities, the overlapping shaded area includes all points which satisfy both inequalities.
- > Check solution in both equations. Select a point in the shaded region to check both inequalities.

I Linear-Linear Systems	Y [†]
y = 2x	
1) Solve this system graphically: $\begin{cases} 2x + 2y = 12 \\ 2x + 2y = 12 \end{cases}$	
y = 2x type of equation:	
2x + 2y = 12 type of equation:	<pre></pre>
Graph to find the point of intersection.	
Solution: (,)	
These are called <i>consistent equations</i> and they have <u>one</u>	<i>point of intersection</i> . ***************
$\int v = x + 2$	
2) Solve this system: $\begin{cases} y = x - 1 \\ y = x - 1 \end{cases}$	
y = x + 2 type of equation:	
y = x - 1 type of equation:	
Solution(s)?	
These are <i>inconsistent equations</i> ; the lines have the same	e slope, but different y-intercepts so <i>lines are</i>

parallel and have no points of intersection.

3) Solve this system graphically:
$$y = \frac{1}{2}x + 1$$
 and $2y - x = 2$

Solution(s)?

These are called *dependent equations*: The lines are identical (they have the same slope and y-intercept) so they have *infinite points of intersection*.

4) Solve the system graphically: $\begin{cases} y - x = -4 \\ y = x^2 - 6x + 6 \end{cases}$ y - x = -4 type of equation: $y = x^2 - 6x + 6$ type of equation:

Quadratic:
$$y = x^2 - 6x + 6$$

- 1. Find the axis of symmetry:
- 2. Make a table.
- 3. Graph & label the parabola.

Linear:
$$y - x = -4$$

- 1. Find slope and y-intercept.
- 2. Graph & label.

Find the solution(s) where the 2 intersect. LABEL THESE ON THE GRAPH!!!!!

Solution(s):

5) June Regents Question

Solve the following system of equations graphically.

$$2x^2 - 4x = y + 1$$
$$x + y = 1$$

Warm Up: Graph the following.

Name:

III Systems of Inequalities

When you solve a system of inequalities, the solution set is the shaded region that satisfies both inequalities. Here are the steps:

- Graph the lines. (Remember to choose a dotted or solid line).
- Shade and label each inequality
- The double shaded area is the solution.

$$\begin{cases} y > x + 4 \\ y \le -x \end{cases}$$

6) Solve the system: $y \leq -x$

Label solution set with an S.

7) Solve the system, y > -5 and $y \ge x+5$. Label solution set with a J.

Solve the system of equations and inequalities. For inequalities, shade and label the solution set with an S.

in feet is y = 6x + 8. After how many seconds will the balloon and quarter pass each other (i.e. be at the same height at the same time)?

CALCULATOR HELP: Adjust WINDOW if necessary, then push 2nd CALC (5)Intersect Enter Enter Enter