Simplifying Square Roots

Vocabulary:

- radical symbol $(\sqrt{\ })$
- radicand the number or expression under the radical symbol
- principal root the positive square root of a number

To indicate both the positive and negative square roots of a number, use the plus or minus sign (±). $+\sqrt{25} = +5 = 5$ or -5

• Irrational Numbers - Square roots of integers that are not perfect squares

$$\sqrt{2}$$
 $\sqrt{3}$ $\sqrt{5}$

First 15 Perfect Squares:

$$\sqrt{1} = 1$$
 $\sqrt{25} = 5$ $\sqrt{81} = 9$ $\sqrt{169} = 13$
 $\sqrt{4} = 2$ $\sqrt{36} = 6$ $\sqrt{100} = 10$ $\sqrt{196} = 14$
 $\sqrt{9} = 3$ $\sqrt{49} = 7$ $\sqrt{121} = 11$ $\sqrt{225} = 15$
 $\sqrt{16} = 4$ $\sqrt{64} = 8$ $\sqrt{144} = 12$

Properties of Square Roots

For $a \ge 0$ and b > 0,

WORDS	NUMBERS	ALGEBRA
Product Property of Square Roots		
The square root of a product is equal to the product of the square roots of the factors.	$\sqrt{12} = \sqrt{4 \cdot 3}$ $= \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$ $\sqrt{8} \cdot \sqrt{2} = \sqrt{8 \cdot 2}$ $= \sqrt{16} = 4$	$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$

• Notes:

The property can be used to:

- combine quantities under the radical symbol
- separate them for the purpose of simplifying square-root expressions
- A square root expression is in simplest form when the radicand has no perfect-square factors (except 1)

Guided Example 1:

Process:

- 1. Find factors of the radicand that are perfect squares
- 2. Rewrite the radicand as the product of a perfect square factor & another factor
- 3. Take the square root of the perfect square

Factors:

1 * 98

2 * <u>49</u>

$$\sqrt{32}$$

$$4\sqrt{2}$$

Guided Example 2:

$$2\sqrt{98}$$

$$2\sqrt{49*2}$$

$$2*7\sqrt{2}$$

$$14\sqrt{2}$$

Guided Example 3:

$$\sqrt{288}$$

$$\sqrt{144*2}$$

$$12\sqrt{2}$$

Factors: 1 * 288 2 * <u>144</u>