

Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste

Chapter 4

Nomenclature

Gretchen M. Adams • University of Illinois at Urbana-Champaign

Naming Binary Compounds

Objectives

- 1. To learn to name binary compounds of a metal and a nonmetal
- 2. To learn to name binary compounds containing only nonmetals
- 3. To summarize the naming of all types of binary compounds

Naming Binary Compounds

A. Naming Compounds That Contain a Metal and a Nonmetal

- Binary ionic compounds contain positive cations and negative anions.
 - Type I compounds
 - Metal present forms only one cation
 - Type II compounds
 - Metal present can form 2 or more cations with different charges

Type I	Type II
$Na \rightarrow Na^{+}$ $Cs \rightarrow Cs^{+}$ $Ca \rightarrow Ca^{2+}$	$Cr \rightarrow Cr^{2+}$ $\rightarrow Cr^{3+}$ $Cu \rightarrow Cu^{+}$
$Al \rightarrow Al^{3+}$	$\sim Cu^{2+}$

Naming Binary Compounds

A. Naming Compounds That Contain a Metal and a Nonmetal

Table 4.1 Common Simple Cations and Anions

Cation	Name	Anion	Name*
H+	hydrogen	H-	hydride
Li ⁺	lithium	F-	fluoride
Na ⁺	sodium	Cl-	chloride
K+	potassium	Br-	bromide
Cs ⁺	cesium	I-	iodide
Be ²⁺	beryllium	O ²⁻	oxide
Mg ²⁺	magnesium	S ²⁻	sulfide
Ca ²⁺	calcium		
Ba ²⁺	barium		
Al ³⁺	aluminum		
Ag+	silver		

^{*}The root is given in color.

Naming Binary Compounds

A. Naming Compounds That Contain a Metal and a Nonmetal

Type I Binary Ionic compounds

Rules for Naming Type I Ionic Compounds

- 1. The cation is always named first and the anion second.
- 2. A simple cation (obtained from a single atom) takes its name from the name of the element. For example, Na⁺ is called sodium in the names of compounds containing this ion.
- **3.** A simple anion (obtained from a single atom) is named by taking the first part of the element name (the root) and adding *-ide*. Thus the Cl⁻ ion is called chloride.
- 4. Write the name for the compound by combining the names of the ions.

A. Naming Compounds That Contain a Metal and a Nonmetal

 For compounds containing both a metal and a nonmetal, the metal is always named first. The nonmetal is named from the root element name.

Naming Binary Compounds

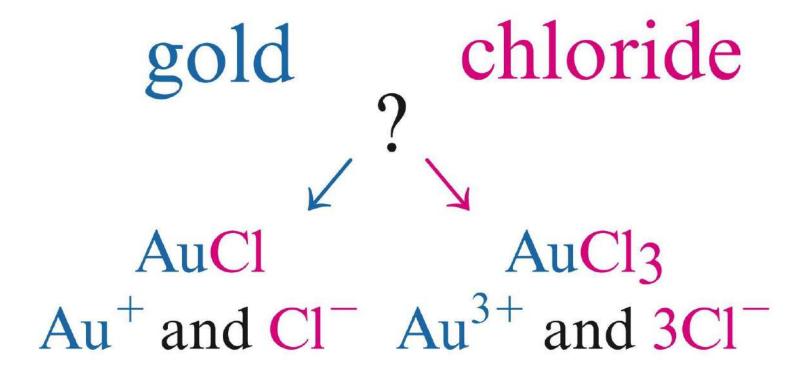
Exercise

Name the following compounds.

KCI potassium chloride

MgBr₂ magnesium bromide

BaO barium oxide


Naming Binary Compounds

A. Naming Compounds That Contain a Metal and a Nonmetal

Type II Binary Ionic compounds

 Since the metal ion can have more than one charge, a Roman numeral is used to specify the charge.

Naming Binary Compounds

A. Naming Compounds That Contain a Metal and a Nonmetal

Type II Binary Ionic compounds

Table 4.2 Common Type II Cations

lon	Systematic Name	Older Name	lon	Systematic Name	Older Name
Fe ³⁺	iron(III)	ferric	Sn ⁴⁺	tin(IV)	stannic
Fe ²⁺	iron(II)	ferrous	Sn ²⁺	$ an(\Pi)$	stannous
Cu²+	copper(II)	cupric	Pb ⁴⁺	lead(IV)	plumbic
Cu+	copper(I)	cuprous	Pb ²⁺	lead(II)	plumbous
Co ³⁺	cobalt(III)	cobaltic	Hg ²⁺	mercury(II)	mercuric
Co ²⁺	cobalt(II)	cobaltous	Hg ₂ ²⁺ *	mercury(I)	mercurous

^{*}Mercury(I) ions always occur bound together in pairs to form Hg₂²⁺.

Naming Binary Compounds

Exercise

Name the following compounds.

CuBr copper(I) bromide

FeS iron(II) sulfide

PbO₂ lead(IV) oxide

Naming Binary Compounds

B. Naming Binary Compounds That Contain Only Nonmetals

Type III Compounds

Rules for Naming Type III Binary Compounds

- 1. The first element in the formula is named first, and the full element name is used.
- 2. The second element is named as though it were an anion.
- **3.** Prefixes are used to denote the numbers of atoms present. These prefixes are given in **Table 4.3**.
- **4.** The prefix *mono-* is never used for naming the first element. For example, CO is called carbon monoxide, *not* monocarbon monoxide.

Naming Binary Compounds

B. Naming Binary Compounds That Contain Only Nonmetals Table 4.3 Prefixes

Type III Compounds

Table 4.3 Prefixes Used to Indicate Numbers in Chemical Names

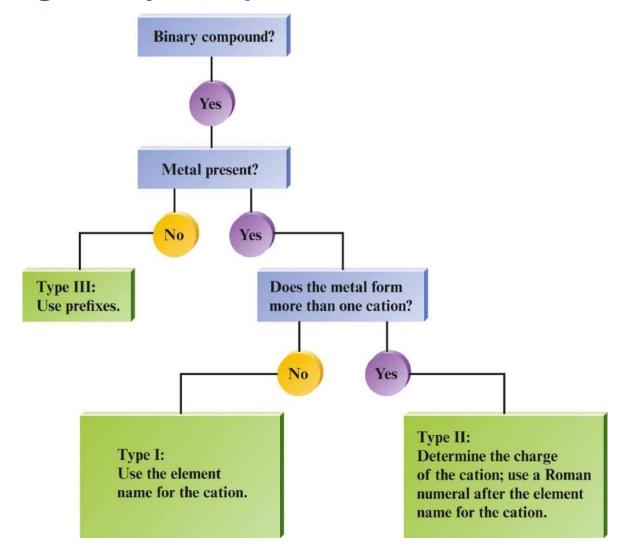
Prefix	Number Indicated
топо-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8

Naming Binary Compounds

Exercise

Name the following compounds.

CO₂ carbon dioxide


SF₆ sulfur hexafluoride

N₂O₄ dinitrogen tetroxide

Naming Binary Compounds

C. Naming Binary Compounds: A Review

Naming Binary Compounds

Exercise

Which of the following compounds is named incorrectly?

a) K ₃ N	potassium nitride
b) TiO ₂	titanium(II) oxide
c) SnBr ₄	tin(IV) bromide
d) PBr ₅	phosphorus pentabromide
e) CaS	calcium sulfide

Naming and Writing Formulas for More Complex Compounds

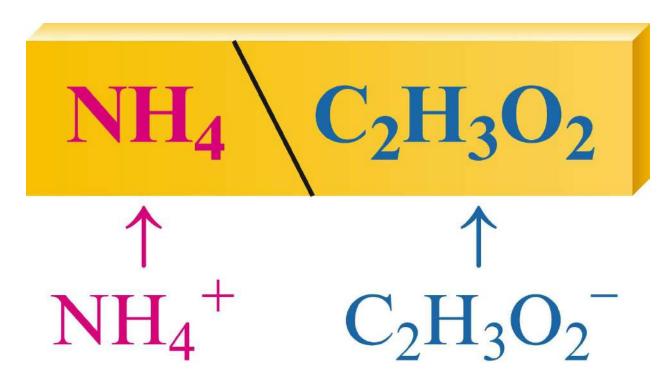
Objectives

- 1. To learn the names of common polyatomic ions
- 2. To learn to name compounds containing polyatomic ions
- 3. To learn how the anion composition determines an acid's name
- 4. To learn the names for common acids
- 5. To learn to write the formula for a compound, given its name

Naming and Writing Formulas for More Complex Compounds

A. Naming Compounds That Contain Polyatomic Ions

- Polyatomic ions are charged entities composed of several atoms bound together.
- They have special names and must be memorized.


Table 4.4 Names of Common Polyatomic Ions

lon	Name	lon	Name
NH ₄ ⁺	ammonium	ClO-	hypochlorite
NO ₂ -	nitrite	ClO ₂ -	chlorite
NO ₃ -	nitrate	ClO ₃ -	chlorate
SO ₃ ²⁻	sulfite	ClO ₄ -	perchlorate
SO ₄ ²⁻	sulfate	CO ₃ ²⁻	carbonate
HSO ₄ ⁻	hydrogen sulfate (bisulfate is a widely used common name)	HCO ₃ -	hydrogen carbonate (bicarbonate is a widely used common name)
OH-	hydroxide	C ₂ H ₃ O ₂ ⁻	acetate
CN-	cyanide	MnO ₄ -	permanganate
PO ₄ ³⁻	phosphate	Cr ₂ O ₇ ²⁻	dichromate
HPO ₄ ²⁻	hydrogen phosphate	CrO ₄ ²⁻	chromate
H ₂ PO ₄ ⁻	dihydrogen phosphate	O ₂ ²⁻	peroxide

A. Naming Compounds That Contain Polyatomic Ions

- Naming ionic compounds containing polyatomic ions follows rules similar to those for binary compounds.
 - Example: ammonium acetate

Naming and Writing Formulas for More Complex Compounds

Exercise

Name the following compounds.

 K_2CO_3 potassium carbonate $Mg(OH)_2$ magnesium hydroxide $(NH_4)_3PO_4$ ammonium phosphate

B. Naming Acids

 An acid is a molecule with one or more H⁺ ions attached to an anion.

Rules for Naming Acids

1. If the *anion does not contain oxygen*, the acid is named with the prefix *hydro-* and the suffix *-ic* attached to the root name for the element. For example, when gaseous HCl, HCN, and H₂S are dissolved in water, they form the following acids:

Acid	Anion	Name
HCl	Cl ⁻	hydrochloric acid
HCN	CN^-	hydrocyanic acid
H_2S	S^{2-}	hydrosulfuric acid

Section 4.2

Naming and Writing Formulas for More Complex Compounds

B. Naming Acids

Table 4.5 Names of Acids That Do Not Contain Oxygen

Acid	Name
HF	hydrofluoric acid
HCl	hydrochloric acid
HBr	hydrobromic acid
HI	hydroiodic acid
HCN	hydrocyanic acid
H ₂ S	hydrosulfuric acid

B. Naming Acids

2. When the *anion contains oxygen*, the acid name is formed from the root name of the central element of the anion or the anion name with a suffix of *-ic* or *-ous*. When the anion name ends in *-ate*, the suffix *-ic* is used. For example,

Acid	Anion	Name
H_2SO_4	SO ₄ ²⁻ (sulfate)	sulfuric acid
H_3PO_4	PO ₄ ³⁻ (phosphate)	phosphoric acid
$HC_2H_3O_2$	$C_2H_3O_2^-$ (acetate)	acetic acid

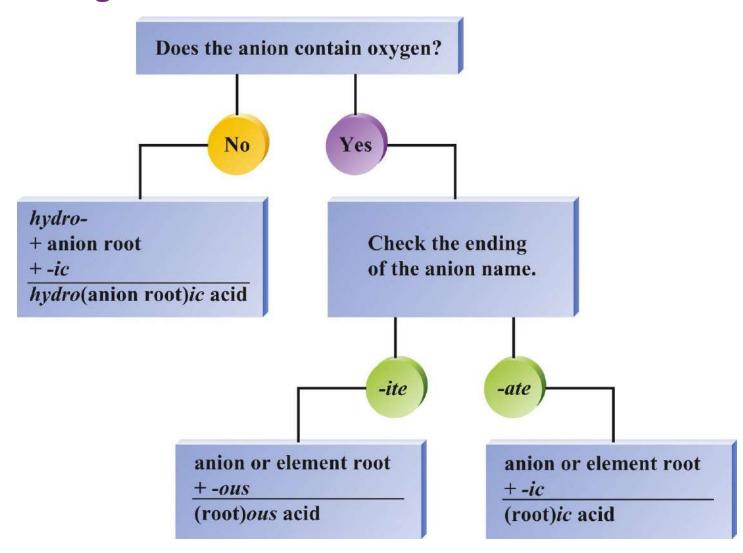
When the anion name ends in *-ite*, the suffix *-ous* is used in the acid name. For example,

Acid	Anion	Name
H_2SO_3	SO ₃ ²⁻ (sulfite)	sulfurous acid
HNO_2	NO ₂ (nitrite)	nitrous acid

Section 4.2

Naming and Writing Formulas for More Complex Compounds

B. Naming Acids


Table 4.6 Names of Some Oxygen-Containing Acids

Acid	Name
HNO ₃	nitric acid
HNO ₂	nitrous acid
H ₂ SO ₄	sulfuric acid
H_2SO_3	sulfurous acid
H ₃ PO ₄	phosphoric acid
HC ₂ H ₃ O ₂	acetic acid

Naming and Writing Formulas for More Complex Compounds

B. Naming Acids

Naming and Writing Formulas for More Complex Compounds

Exercise

Name the following acids.

HNO₃ nitric acid

HBr hydrobromic acid

H₃PO₄ phosphoric acid

C. Writing Formulas from Names

- Sodium hydroxide
 - NaOH
- Potassium carbonate
 - K₂CO₃
- Sulfuric acid
 - H₂SO₄
- Dinitrogen pentoxide
 - N₂O₅
- Cobalt(III) nitrate
 - $Co(NO_3)_3$

Naming and Writing Formulas for More Complex Compounds

Exercise

What is the formula for each of the following compounds?

barium chloride BaCl₂

copper(I) nitrate CuNO₃

iron(III) sulfate $Fe_2(SO_4)_3$

phosphorus pentabromide PBr₅