	New Jersey Center for Teaching and Learning	Slide 1 / 153
())		
	Progressive mathematics initiative	
SIF	This material is made freely available at www.njctl.org and is intended for the non-commercial use of	
- illin	students and teachers. These materials may not be used for any commercial purpose without the written permission of the owners. NJCTL maintains its	
TEACHING LEARNING	website for the convenience of teachers who wish to make their work available to other teachers, participate in a virtual professional learning community, and/or provide access to course	
	materials to parents, students and others.	
	Click to go to website:	
	www.njcu.org	

Table of Contents	Slide 3 / 153
Click on the topic to go to that section	
Arithmetic Sequences	
Geometric Sequences	
eometric Series	
bonacci and Other Special Sequences	
uences as functions	

Goals and Objectives

Students will be able to understand how the common difference leads to the next term of an arithmetic sequence, the explicit form for an Arithmetic sequence, and how to use the explicit formula to find missing data.

Why Do We Need This?

Arithmetic sequences are used to model patterns and form predictions for events based on these patterns, such as in loan payments, sales, and revenue. Slide 5 / 153

Vocabulary

An Arithmetic sequence is the set of numbers found by adding the same value to get from one term to the next.

Example:

1, 3, 5, 7,...

10, 20, 30,...

10, 5, 0, -5,..

Slide 6 / 153

Notation	Slide 8 / 153
As we study sequences we need a way of naming the terms. a_1 to represent the first term, a_2 to represent the second term, a_3 to represent the third term, and so on in this manner.	
If we were talking about the 8^{th} term we would use $a_8.$	
When we want to talk about general term call it the n^{th} term and use $a_{n_{\rm c}}$	

Finding the Common Difference		Slide 9 / 153
1. Find two subsequent terms such as a ₁ and a ₂ 2. Subtract a ₂ - a ₁		
Find d: 4, 10, 16,	Solution	

Find the common difference:	Slide 10 / 153
1, 4, 7, 10,	
5, 11, 17, 23,	
9, 5, 1, -3,	
$\frac{1}{2}, 3, \frac{11}{2}, 8, \dots$	

	Slide 11 / 153
NOTE: You can find the common difference using ANY set of consecutive terms	
For the sequence 10, 4, -2, -8, Find the common difference using a_1 and a_2 :	
Find the common difference using a₃ and a₄:	
What do you notice?	

To find the next term:		Slide 12 / 153
1. Find the common difference		
2. Add the common difference to the last term of the sequence		
3. Continue adding for the specified number of terms		
Example: Find the next three terms	olution	
1, 5, 9, 13,	ŏ	

2 Find the net -8, -4, 0, 4, .	xt term in the arithmetic sequence: 		Slide 15 / 153
		Solution	

3 Find the next term in the arithmetic sequence: 2.3, 4.5, 6.7, 8.9,	Slide 16 / 153
tto	
S.	

5	Find the value of d in the arithmetic sequence: -8, 3, 14, 25,		Slide 18 / 153
		5	
		Solut	

	Slide 19 / 153
Write the first four terms of the arithmetic sequence	
that is described.	
1. Add d to a ₁	
2. Continue to add d to each subsequent terms	
Example:	
Write the first four terms of the sequence:	
a₁=3, d= 7	

6 Which sequence matches the description? $a_1 = 2; d = 4$		Slide 21 / 153
A 4, 6, 8, 10		
ОВ 2, 6,10, 14	tion	
⊖C 2, 8, 32, 128	Solt	
○ D 4, 8, 16, 32		

8 Which sequence matches the description?	Slide 23 / 153
$a_3 = 7; d = 3$	
◯A 7, 10, 13, 16	
Q В 4, 7, 10, 13	
⊖ C 1, 4, 7,10	
○ D 3, 5, 7, 9	

	Slide 27 / 153
9 Which sequence is described by the recursive	
formula? $a_1 = -2$	
$a_n = a_{n-1} + 4$	
○A -2, -8, -16,	
○B -2, 2, 6,	
○c 2, 6, 10,	
^O D 4, 2, 0,	

10 A requirely a formula is called requirely a bacques if	Slide 28 / 153
uses the previous term.	
[⊖] True	
○ False	

	Slide 29 / 153
11 Which sequence matches the recursive formula?	
$ \begin{cases} a_1 = -5 \\ a_n = a_{n-1} + 2.5 \end{cases} $	
○A -2.5, 0, 2.5,	
○ B -5, -7.5, -9,	
○c -5, -2.5, 0,	
○ D -5, -12.5, -31.25,	

Slide 30 / 153

Consider: 3, 9, 15, 21, 27, 33, 39,...

a_1	3
a_2	9 = 3+6
a ₃	15 = 3 + 12 = 3 + 2(6)
a_4	21 = 3+18 = 3+3(6)
a_5	27 = 3+24 = 3+ 4(6)
a_6	33 = 3 + 30 = 3 + 5(6)
a ₇	39 = 3+36 = 3+6(6)

Slide 31 / 153

Write the explicit formula for the sequences:		Slide 34 / 153
1) 3, 9, 15,		
2) -4, -2.5, -1,	lution	
3) 2, 0, -2,	ŝ	

12 The explicit formula for an arithmetic sequence requires knowledge of the previous term	Slide 35 / 153
◯True	
○ False	
log	

13 Find the explicit formula for 7, 3.5, 0,		Slide 36 / 153
\bigcirc A $a_n = 7 + (n-1)(-3.5)$		
\bigcirc B $a_n = 10.5 - 3.5n$	ution	
\bigcirc C $a_n = 7 - 3.5n$	Solt	
D $a_n = 3.5 + 3.5n$		

Solution

ExampleFind the 12 th term of the arithmetic sequence with $a_1 = 6$ and $d = -5$.		Slide 43 / 153
	ution	
	Sol	

ExampleFind the 1 st term of the arithmetic sequence with a ₁₅ = 30 and d = 7.		Slide 45 / 153
	E.	
	Solutio	

Example Find the 1 st term of the arithmetic sequence with $a_{17} = 4$ and $d = -2$.		Slide 46 / 153
	ution	
	Sol	

Example Find the term number n of the arithmetic sequence with $a_1 = 6$, $a_1 = -34$ and $d = 4$.	Slide 48 / 153
Solution	

18 Find a_{11} when $a_1 = 13$ and $d = 6$.	Slide 49 / 153
Solution	

20 Find a ₁₇ for the sequence 2, 4.5, 7, 9.5,	Slide 51 / 153
Solution	

23 Tom works at a car dealership selling cars. He is paid \$4000 a month plus a \$300 commission for every car he sells. How much did he make in April if he sold 14 cars?	Slide 54 / 153
solution	
	

24 Suppose you participate in a bikeathon for charity. The charity starts with \$1100 in donations. Each participant must raise at least \$35 in pledges. What is the minimum amount of money raised if there are 75 participants?	Solution	Slide 55 / 153
25 Elliot borrowed \$370 from his parents. He will pay them back at the rate of \$60 per month. How long will it take for him to pay his parents back?	Solution	Slide 56 / 153

Slide 58 / 153

Vocabulary

An Geometric sequence is the set of numbers found by multiplying by the same value to get from one term to the next.

Example:

1, 0.5, 0.25,...

2, 4, 8, 16, ...

.2, .6, 1.8, ...

Slide 59 / 153

Vocabulary

The ratio between every consecutive term in the geometric sequence is called the common ratio.

This is the value each term is multiplied by to find the next term.

Example:

1, 0.5, 0.25,... \longrightarrow r = 0.5 2, 4, 8, 16, ... \longrightarrow r = 2 0.2, 0.6, 1.8, ... \longrightarrow r = 3

Slide 60 / 153

		Slide 61 / 153
Write the first four terms of the geometric sequence described.		
1. Multiply a₁ by the common ratio r.		
2. Continue to multiply by r to find each subsequent term.		
Example: Find the first four terms:		
a ₁ =3 and r = 4	tion	
	Solu	

Find the next 3 terms in the geometric sequence		Slide 63 / 153
3, 6, 12, 24,		
5, 15, 45, 135,		
32, -16, 8, -4,	Solution	
16, 24, 36, 54,		

 Find the next term in geometric sequence: 6, 15, 37.5, 93.75, 	Slide 66 / 153
Solution	

Verifying Sequences	Slide 67 / 153
To verify that a sequence is geometric:	
1. Verify that the common ratio is common to all terms by dividing each consecutive pair of terms.	
Example:	
Is the following sequence geometric?	
3, 6, 12, 18,	
·	

	Slide 69 / 153
Examples: Find the first five terms of the geometric sequence described.	
1) a ₁ = 6 and r = 3	
click	
2) $a_1 = 8$ and $r =5$	
click	
3) a ₁ = -24 and r = 1.5	
click	
4) $a_1 = 12$ and $r = \frac{2}{3}$	
click	

30 Fi des	nd the first four terms of the geometric sequence cribed: $a_1 = 6$ and $r = 4$.		Slide 70 / 153
A	6, 24, 96, 384		
⊖В	4, 24, 144, 864		
○ C 6, 10, 14, 18	6, 10, 14, 18 5	50	
⊖ D	4, 10, 16, 22		

32 Find the first four terms of the geometric sequence described: $a_1 = 7$ and $r = -2$.		Slide 72 / 153
A	14, 28, 56, 112	
⊖В	-14, 28, -56, 112	
⊖c	7, -14, 28, -56	
) D	-7, 14, -28, 56	

 33
 Which sequence does the recursive formula represent?
 $a_n = \begin{cases} a_1 = \frac{1}{4} \\ a_n = (a_{n-1}) \left(\frac{-3}{2} \right) \end{cases}$ Slide 76 / 153

 $\bigcirc A$ 1/4, 3/8, 9/16, ...
 $\bigcirc B$ -1/4, 3/8, -9/16, ...

 $\bigcirc B$ -1/4, -3/8, 9/16, ...
 $\bigcirc D$
 $\bigcirc D$ -3/2, 3/8, -3/32, ...
 $\bigcirc D$

Consider the sequence: 3, 6, 12, 24, 48, 96, . . . To find the seventh term, just multiply the sixth term by 2. But what if I want to find the 20 th term?

Look for a pattern:

a ₁	3
a ₂	6 = 3(2)
a ₃	$12 = 3(4) = 3(2)^2$
a 4	$24 = 3(8) = 3(2)^3$
a ₅	$48 = 3(16) = 3(2)^4$
a ₆	$96 = 3(32) = 3(2)^5$
a ₇	$192 = 3(64) = 3(2)^6$

Do you see a pattern?

click

Slide 80 / 153

Slide 79 / 153

This formula is called the explicit formula.

It is called explicit because it does not depend on the previous term

The explicit formula for an geometric sequence is:

 $a_n = a_1 \cdot r^{n-1}$

Slide 81 / 153 To find the explicit formula: 1. Find a₁ 2. Find r **3.** Plug a_1 and r into $a_n = a_1 \cdot r^{n-1}$ 4. Simplify if possible Example: Write the explicit formula for 2, -1, 1/2, ... Solution

38 What is the initial term for the geometric sequence described by

$$a_n = -\frac{7}{3}(3)^{n-1}$$

39 Which explicit formula describes the sequence 1.5, 4. 13.5,	Slide 86 / 153
$\bigcirc \mathbf{A} a_n = 3(1.5)^{n-1}$	
$\bigcirc \mathbf{B} a_n = 1.5(3)^{n-1}$	
$\bigcirc \mathbf{C} a_n = 4.5(1.5)^{n-1}$	
$\bigcirc \mathbf{D} a_n = 3(13.5)^{n-1}$	

olution

40 What is the explicit formula for the geometric sequence -8, 4, -2, 1,		Slide 87 / 153
$\bigcirc \mathbf{A} a_n = (8)(-2)^{n-1}$		
$\bigcirc \mathbf{B} a_n = (-8)(2)^{n-1}$	olution	
$\bigcirc \mathbf{c} a_n = (-8)(0.5)^{n-1}$	й	
$\bigcirc \mathbf{D} a_n = (-8)(-0.5)^{n-1}$		

 44 Find r of a geometric sequence where a₁ = 3 and a₁₀=59049. 		Slide 96 / 153
	olution	
	й	

45 Find n of a geometric sequence where $a_1 = 72$, r = .5, and $a_n = 2.25$		Slide 97 / 153
	Solution	

	Slide 98 / 153
46 Suppose you want to reduce a copy of a photograph. The original length of the photograph is 8 in. The smallest size the copier can make is 58% of the original.	
Find the length of the photograph after five reductions.	
Solution	

47 The deer population in an area is increasing. This year, the population was 1.025 times last year's population of 2537. How many deer will there be in	Slide 99 / 153
the year 2022?	
Solution	

		Slide 100 / 153
Geometric Series		
	Return to Table of Contents	

Vocabulary	Slide 102 / 153
A geometric series is the sum of the terms in a geometric sequence.	
Example:	
1+2+4+8+ a₁=1	
r=2	

49 Find the indicated sum of the geometric series described: $a_1 = 8$, $n = 6$, and $r = -2$		Slide 108 / 153
	Б	
	Soluti	

Solution

53 Find the indicated sum of the geometric series described: r = 6, n = 4, and a₄ = 2592	Slide 114 / 153
_	
Solutio	

A recursive formula is one in which to find a term you need to know the preceding term.

So to know term 8 you need the value of term 7, and to know the n^{th} term you need term n-1

In each example, find the first 5 terms

$a_1 = 6, a_n = a_{n-1} + 7$		$a_1 = 10, a_n = 4a_{n-1}$		$a_1 = 12, a_n = 2a_{n-1} + 3$
6	aı	10	a1	12
13	a ₂	40	a_2	27
20	a ₃	160	a3	57
27	a4	640	a_4	117
34	a ₅	2560	a5	237

Slide 120 / 153

58 Find the first four terms of the sequence:		Slide 122 / 153
$a_1 = 6$ and $a_n = -3a_{n-1}$		
○ A 6, 3, 0, -3		
ОВ 6, -18, 54, -162		
⊖C -3, 3, 9, 15	u i	
○D -3, 18, 108, 648	Solut	

$a_1 = 6, a_n = a_{n-1} + 7$		$a_1 = 10, a_n = 4a_{n-1}$		$a_1 = 12, a_n = 2a_{n-1} + 3$
6	a ₁	10	a ₁	12
13	a ₂	40	a_2	27
20	a ₃	160	a3	57
27	a_4	640	a4	117
34	a5	2560	a ₅	237

The recursive formula in the first column represents an Arithmetic Sequence.

We can write this formula so that we find a $\ensuremath{\mathsf{n}}$ directly.

Recall: $a_n = a_1 + (n-1)d$

We will need a_1 and d,they can be found both from the table and the recursive formula.

click

$a_1 = 6, a_n = a_{n-1} + 7$		$a_1 = 10, a_n = 4a_{n-1}$		$a_1 = 12, a_n = 2a_{n-1} + 3$
6	aı	10	a1	12
13	a ₂	40	a_2	27
20	a ₃	160	a3	57
27	a_4	640	a_4	117
34	a ₅	2560	a5	237

The recursive formula in the second column represents Geometric Sequence.

We can write this formula so that we find a_n directly.

Recall:
$$a_n = a_1(r)^{n-1}$$

We will need a_1 and r, they can be found both from the table and the recursive formula.

click

$a_1 = 6, a_n = a_{n-1} + 7$		$a_1 = 10, a_n = 4a_{n-1}$		$a_1 = 12, a_n = 2a_{n-1} + 3$
6	aı	10	aı	12
13	a2	40	a_2	27
20	a ₃	160	a ₃	57
27	a_4	640	a_4	117
34	a ₅	2560	a ₅	237

The recursive formula in the third column represents neither an Arithmetic or Geometric Sequence.

This observation comes from the formula where you have both multiply and add from one term to the next.

Slide 125 / 153

Slide 126 / 153

60 Identify the sequence as arithmetic, geometric,or neither.	Slide 127 / 153
$a_1 = 12$, $a_n = 2a_{n-1} + 7$	
○A Arithmetic	
⊖ B Geometric 5	
⊖ C Neither 5	

Find the first five terms of the sequence: a ₁ = 10, a ₂ = 6, and a _n = 2a _{n-1} - a _{n-2}	Slide 138 / 153
$ \begin{array}{r} 10\\ 6\\ 2(6) -10 = 2\\ 2(2) - 6 = -2\\ 2(-2) - 2 = -6\\ \end{array} $	

The Fibonacci Sequence 1, 1, 2, 3, 5, 8, 13, 21, . . .

where the first 2 terms are 1's and any term there after is the sum of preceding two terms.

This is as famous as a sequence can get an is worth remembering.

69 Find the first four terms of sequence: $a_1 = 5$, $a_2 = 7$, and $a_n = a_1 + a_2$		Slide 141 / 153
 ○ A 7, 5, 12, 19 ○ B 5, 7, 35, 165 ○ C 5, 7, 12, 19 ○ D 5, 7, 13, 20 	Solution	

71 Find the first four terms of sequence:			Slide 143 / 153
	$a_1 = 3$, $a_2 = 3$, and $a_n = 3a_{n-1} + a_{n-2}$		
OA	3, 3, 6, 9		
⊖В	3, 3, 12, 39	5	
⊖c	3, 3, 12, 36	Soluti	
⊖ D	3, 3, 6, 21		

	Slide 145 / 153
Discuss:	
Do you think that a sequence is a function?	
What do you think the domain of that function be?	

	Slide 146 / 153
Recall:	
A function is a relation where each value in the domain has exactly one output value.	
A sequence is a function, which is sometimes defined recursively with the domain of integers.	

	Slide 147 / 153
To write a sequence as a function:	
1. Write the explicit or recursive formula using function notation.	
Example: Write the following sequence as a function	
1, 2, 4, 8,	
Ę	
<u>ช</u> ี	

Example: Write the sequence as a function 1, 1, 2, 3, 5, 8,	Slide 148 / 153
Solution	

	Slide 150 / 153
72 All functions that represent sequences have a domain positive integers	
⊖True	
⊖ False	
Solution	

Discuss:	Slide 153 / 153
Is it possible to find f(-3) for a function describing a sequence? Why or why not?	