Grade	Strand	Substrand	Standard "Understand that	Code	Benchmark
к	1. The Nature of	1. The Practice of	2. Scientific inquiry is a set of interrelated	0.1.1.2.1	Use observations to develop an accurate description of a natural
	Science and	Science	processes used to pose questions about the		phenomenon and compare one's observations and descriptions
	Engineering		natural world and investigate phenomena.		with those of others.
к	1. The Nature of	2. The Practice of	1. Some objects occur in nature; others have	0.1.2.1.1	group or classify rocks in terms of color, shape and size.
	Science and	Engineering	been designed and processed by people		
	Engineering				
к	2. Physical	1.Matter	1. Objects can be described in terms of the	0.2.1.1.1	Sort objects in terms of color, size, shape, and texture, and
	Science		materials they are made of and their physical		communicate reasoning for the sorting system.
			properties.		
к	3. Earth Science	2. Interdepen-	2. Weather can be described in measurable	0.3.2.2.1	Monitor daily and seasonal changes in weather and summarize the
		dence within the	quantities and changes from day to day and		changes. For example: Recording cloudiness, rain, snow and
		Earth system	with the seasons.		temperature.
к	3. Earth Science	2. Interdepen-	2. Weather can be described in measurable	0.3.2.2.2	Identify the sun as a source of heat and light. For example: Record
		dence within the	quantities and changes from day to day and		the time of day when the sun shines into different locations of the
		Earth system	with the seasons.		school and note patterns.
к	4. Life Science	1. Structure and	1. Living things are diverse with many different	0.4.1.1.1	Observe and compare plants and animals.
		Function of Living	observable characteristics.		
		Systems			
к	4. Life Science		1. Living things are diverse with many different	0.4.1.1.2	Identify the external parts of a variety of plants and animals
		Function of Living	observable characteristics.		including humans. For example: Heads, legs, eyes and ears on
		Systems			humans and animals, flowers, stems and roots on many plants.
к	4. Life Science	1. Structure and	1. Living things are diverse with many different	0.4.1.1.3	Differentiate between living and nonliving things. For example:
		Function of Living	observable characteristics.		Sort organisms and objects (or pictures of these) into groups of
		Systems			those that grow, and reproduce, and need air, food, and water; and
					those that don't.
к	4. Life Science	2. Interdepen-	1. Natural systems have many components	0.4.2.1.1	Observe a natural system or its model, and identify living and
		dence Among	that interact to maintain the system.		nonliving components in that system. <i>For example:</i> A wetland,
		Living Systems			prairie, garden or aquarium.
1	1. The Nature of	1. The Practice of	1. Scientists work as individuals and in groups	1.1.1.1.1	When asked "How do You Know?", students support their answer
	Science and	Science	to investigate the natural world, emphasizing		with observations. <i>For example:</i> Use observations to tell why a
	Engineering		evidence and communicating with others.		squirrel is a living thing.

1	1. The Nature of	1. The Practice of	1. Scientists work as individuals and in groups	1.1.1.1.2	Recognize that describing things as accurately as possible is
	Science and	Science	to investigate the natural world, emphasizing		important in science because it enables people to compare their
	Engineering		evidence and communicating with others.		observations with those of others.
1	1. The Nature of	3. Interactions	1. Designed and natural systems exist in the	1.1.3.1.1	Observe that many living and nonliving things are made of parts
	Science and	Among Science,	world. These systems are made up of		and that if a part is missing or broken, they may not function
	Engineering	Engineering,	components that act within a system and		properly.
		Technology and	interact with other systems.		
		Society			
1	1. The Nature of	3. Interactions	2. Men and women throughout the history of	1.1.3.2.1	Recognize that tools are used by people, including scientists and
	Science and	Among Science,	all cultures, including Minnesota American		engineers, to gather information and solve problems. For example:
	Engineering	Engineering,	Indian tribes and communities, have been		Magnifier, snowplow, calculator.
		Technology and	involved in engineering design and scientific		
		Society	inquiry.		
1	3. Earth Science	1. Earth	3.Earth materials include solid rocks, sand, soil	1.3.1.3.1	Group or classify rocks in terms of color, shape and size.
		Structure and	and water. These materials have different		
		Processes	observable physical properties that make them		
			useful.		
1	3. Earth Science	1. Earth	3.Earth materials include solid rocks, sand, soil	1.3.1.3.2	Describe similarities and differences between soil and rocks. For
		Structure and	and water. These materials have different		example: Use screens to separate components of soil and observe
		Processes	observable physical properties that make them		the samples using a magnifier.
			useful.		
1	3. Earth Science	1. Earth	3.Earth materials include solid rocks, sand, soil	1.3.1.3.3	Identify and describe large and small objects made of Earth
		Structure and	and water. These materials have different		materials.
		Processes	observable physical properties that make them		
			useful.		
1	4. Life Science		1. Living things are diverse with many different	1.4.1.1.1	Describe and sort animals into groups in many ways, according to
		-	observable characteristics.		their physical characteristics and behaviors.
		Systems			
1	4. Life Science		1. Natural systems have many components	1.4.2.1.1	Recognize that animals need space, water, food, shelter and air.
		-	that interact to maintain the system.		
		Living Systems			
1	4. Life Science	2. Interdepen-	1. Natural systems have many components	1.4.2.1.2	Describe ways in which an animal's habitat provides for its basic
		-	that interact to maintain the system.		needs. For example: Compare students' houses with animal
		Living Systems			habitats.

1	4. Life Science	3. Evolution in	1. Plants and animals undergo a series of	1.4.3.1.1	Demonstrate an understanding that animals pass through life cycles
		Living Systems	orderly changes during their life cycles.		that include a beginning, development into adults, reproduction
					and eventually death. For example: Use live organisms or pictures
					to observe the changes that occur during the life cycle of
					butterflies, meal worms or frogs.
1	4. Life Science	3. Evolution in	1. Plants and animals undergo a series of	1.4.3.1.2	Recognize that animals pass through the same life cycle stages as
		Living Systems	orderly changes during their life cycles.		their parents.
2	1. The Nature of	1. The Practice of	2. Scientific inquiry is a set of interrelated	2.1.1.2.1	Raise questions about the natural world and seek answers by
	Science and	Science	processes incorporating multiple approaches		making careful observations, noting what happens when you
	Engineering		that are used to pose questions about the		interact with an object, and sharing the answers with others.
			natural world and investigate phenomena.		
2	1. The Nature of	2. The Practice of	2. Engineering design is the process of	2.1.2.2.1	Identify a need or problem and construct an object that helps to
	Science and	Engineering	identifying a problem and devising a product or		meet the need or solve the problem. For example: Design and build
	Engineering		process to solve the problem.		a tool to show wind direction. Another example: Design a kite and
					identify the materials to use.
2	1. The Nature of	2. The Practice of	2. Engineering design is the process of	2.1.2.2.2	Describe why some materials are better than others for making a
	Science and	Engineering	identifying a problem and devising a product or		particular object and how materials that are better in some ways
	Engineering		process to solve the problem.		may be worse in other ways. <i>For example:</i> Objects made of plastic
					or glass.
2	1. The Nature of	2. The Practice of	2. Engineering design is the process of	2.1.2.2.3	Explain how engineered or designed items from everyday life
	Science and	Engineering	identifying a problem and devising a product or		benefit people.
	Engineering		process to solve the problem.		
2	2. Physical	1. Matter	1. Objects can be described in terms of the	2.2.1.1.1	Describe objects in terms of color, size, shape, weight, texture,
	Science		materials they are made of and their physical		flexibility, strength and the types of materials in the object.
			properties.		
2	2. Physical	1. Matter	2. The physical properties of materials can be	2.2.1.2.1	Observe, record, and recognize that water can be a solid or a liquid
	Science		changed, but not all materials respond the		and can change from one state to another.
			same way to what is done to them.		
2	2. Physical	2. Motion	1. The motion of an object can be described by	2.2.2.1.1	Describe an object's change in position relative to other objects or a
	Science		a change in its position over time.		background. For example: Forward, backward, going up, going
					down.

2	2. Physical Science		 The motion of an object can be described by a change in its position over time. 	2.2.2.1.2	Demonstrate that objects move in a variety of ways, including a straight line, a curve, a circle, back and forth, and at different speeds. <i>For example:</i> Spinning toy and rocking toy. <i>Another</i>
					<i>example:</i> Construct objects that will move in a straight line or a curve such as a marble or toy car on a track.
2	2. Physical Science		 The motion of an object can be changed by a push or a pull forces. 	2.2.2.2.1	Describe how push and pull forces can make objects move. For example: Push and pull objects on smooth and rough surfaces.
2	2. Physical Science		 The motion of an object can be changed by a push or a pull forces. 	2.2.2.2.2	Describe how things near Earth fall to the ground unless something holds them up.
2	3. Earth Science	dence within the	 Weather can be described in measurable quantities and changes from day to day and with the seasons. 	2.3.2.2.1	Measure, record and describe weather conditions using common tools. <i>For example:</i> Temperature, precipitation, sunrise/sunset, and wind speed/direction.
2	4. Life Science		 Living things are diverse with many different observable characteristics. 	2.4.1.1.1	Describe and sort plants into groups in many ways, according to their physical characteristics and behaviors.
2	4. Life Science		 Natural systems have many components that interact to maintain the system 	2.4.2.1.1	Recognize that plants need space, water, nutrients and air, and tha they fulfill these needs in different ways.
2	4. Life Science		 Plants and animals undergo a series of orderly changes during their life cycles. 	2.4.3.1.1	Describe the characteristics of plants at different stages of their life cycles. <i>For example</i> : Use live organisms or pictures to observe the changes that occur during the life cycle of bean plants or marigolds.
3	1. The Nature of Science and Engineering	Science	 Scientists work as individuals and in groups; emphasizing evidence, open communication and skepticism. 	3.1.1.1.1	Provide evidence to support claims, other than saying "Everyone knows that," or "I just know," and question such reasons when given by others.
3	1. The Nature of Science and Engineering	Science	2. Scientific inquiry is a set of interrelated processes incorporating multiple approaches that are used to pose questions about the natural world and investigate phenomena.	3.1.1.2.1	Generate questions that can be answered when scientific knowledge is combined with knowledge gained from one's own observations or investigations. <i>For example:</i> Investigate the sounds produced by striking various objects.
3	1. The Nature of Science and Engineering	Science	 Scientific inquiry is a set of interrelated processes incorporating multiple approaches that are used to pose questions about the natural world and investigate phenomena. 	3.1.1.2.2	Recognize that when a science investigation is done the way it was done before, even in a different place, a similar result is expected.

3	1. The Nature of Science and Engineering	1. The Practice of Science	2. Scientific inquiry is a set of interrelated processes incorporating multiple approaches that are used to pose questions about the natural world and investigate phenomena.	3.1.1.2.3	Maintain a record of observations, procedures and explanations, being careful to distinguish between actual observations and ideas about what was observed. <i>For example:</i> Make a chart comparing observations about the structures of plants and animals.
3	1. The Nature of Science and Engineering	Science	2. Scientific inquiry is a set of interrelated processes incorporating multiple approaches that are used to pose questions about the natural world and investigate phenomena.	3.1.1.2.4	Construct reasonable explanations based on evidence collected from observations or experiments.
3	1. The Nature of Science and Engineering	3. Interactions Among Science, Engineering, Technology and Society	2. Men and women throughout the history of all cultures, including Minnesota American Indian tribes and communities, have been involved in engineering design and scientific inquiry.	3.1.3.2.1	Understand that everybody can use evidence to learn about the natural world, identify patterns in nature, and develop tools. <i>For example:</i> Ojibwe and Dakota knowledge and use of patterns in the stars to predict and plan.
3	1. The Nature of Science and Engineering	Engineering,	2. Men and women throughout the history of all cultures, including Minnesota American Indian tribes and communities, have been involved in engineering design and scientific inquiry.	3.1.3.2.2	Recognize that the practice of science and/or engineering involves many different kinds of work and engages men and women of all ages and backgrounds.
3	1. The Nature of Science and Engineering	3. Interactions Among Science, Engineering,	4. Tools and mathematics help scientists and engineers see more, measure more accurately, and do things that they could not otherwise accomplish.	3.1.3.4.1	Use tools, including rulers, thermometers, magnifiers and simple balance, to improve observations and keep a record of the observations made.
3	2. Physical Science	3. Energy	1. Energy appears in different forms, including sound and light.	3.2.3.1.1	Explain the relationship between the pitch of a sound, the rate of vibration of the source, and factors that affect pitch. <i>For example:</i> Changing the length of a string that is plucked changes the pitch.
3	2. Physical Science	3. Energy	1. Energy appears in different forms, including sound and light.	3.2.3.1.2	Explain how shadows form and can change in various ways.
3	2. Physical Science	3. Energy	1. Energy appears in different forms, including sound and light.	3.2.3.1.3	Describe how light travels in a straight line until it is absorbed, redirected, reflected or allowed to pass through an object. <i>For</i> <i>example:</i> Use a flashlight, mirrors and water to demonstrate reflection and bending of light.

3	3. Earth Science		 The sun and moon have locations and movements that can be observed and described. 	3.3.3.1.1	Observe and describe the daily and seasonal changes in the position of the sun and compare observations.
3	3. Earth Science		 The sun and moon have locations and movements that can be observed and described. 	3.3.3.1.2	Recognize the pattern of apparent changes in the moon's shape and position.
3	3. Earth Science		 Objects in the solar system as seen from Earth have various sizes and distinctive patterns of motion. 	3.3.3.2.1	Demonstrate how a large light source at a great distance looks like a small light that is much closer. <i>For example:</i> Car headlights at a distance look small compared to when they are close.
3	3. Earth Science		 Objects in the solar system as seen from Earth have various sizes and distinctive patterns of motion. 	3.3.3.2.2	Recognize that the Earth is one of several planets that orbit the sun, and that the moon orbits the Earth.
3	4. Life Science		 Living things are diverse with many different characteristics that enable them to grow, reproduce and survive. 	3.4.1.1.1	Compare how the different structures of plants and animals serve various functions of growth, survival and reproduction. <i>For example:</i> Skeletons in animals and stems in plants provide strength and stability.
3	4. Life Science		1. Living things are diverse with many different characteristics that enable them to grow, reproduce and survive.	3.4.1.1.2	Identify common groups of plants and animals using observable physical characteristics, structures and behaviors. <i>For example:</i> Sort animals into groups such as mammals and amphibians based on physical characteristics. <i>Another example:</i> Sort and identify common Minnesota trees based on leaf/needle characteristics.
3	4. Life Science	Living Systems	 Offspring are generally similar to their parents, but may have variations that can be advantageous or disadvantageous in a particular environment. 	3.4.3.2.1	Give examples of likenesses between adults and offspring in plants and animals that can be inherited or acquired. <i>For example:</i> Collect samples or pictures that show similarities between adults and their young offspring.
3	4. Life Science	Living Systems	 Offspring are generally similar to their parents, but may have variations that can be advantageous or disadvantageous in a particular environment. 	3.4.3.2.2	Give examples of differences among individuals that can sometimes give an individual an advantage in survival and reproduction.
4	1. The Nature of Science and Engineering	Engineering	 Engineers design, create, and develop structures, processes, and systems that are intended to improve society and may make humans more productive. 	4.1.2.1.1	Describe the positive and negative impacts that the designed world has on the natural world as more and more engineered products and services are created and used.

4	1. The Nature of	2. The Practice of	2. Engineering design is the process of	4.1.2.2.1	Identify and investigate a design solution and describe how it was
	Science and	Engineering	identifying problems, developing multiple		used to solve an everyday problem. For example: Investigate
	Engineering		solutions, selecting the best possible solution,		different varieties of construction tools.
			and building the product.		
4	1. The Nature of	2. The Practice of	2. Engineering design is the process of	4.1.2.2.2	Generate ideas and possible constraints for solving a problem
	Science and	Engineering	identifying problems, developing multiple		through engineering design. For example: Design and build an
	Engineering		solutions, selecting the best possible solution,		electromagnet to sort steel and aluminum materials for recycling.
			and building the product.		
4	1. The Nature of	2. The Practice of	2. Engineering design is the process of	4.1.2.2.3	Test and evaluate solutions, considering advantages and
	Science and	Engineering	identifying problems, developing multiple		disadvantages for the engineering solution, and communicate the
	Engineering		solutions, selecting the best possible solution,		results effectively.
			and building the product.		
4	1. The Nature of	3. Interactions	3. The needs of any society influence the	4.1.3.3.1	Describe a situation in which one invention led to other inventions.
	Science and	Among Science,	technologies that are developed and how they		
	Engineering	Engineering,	are used.		
		Technology and			
		Society			
4	2. Physical	1. Matter	1. Objects have observable properties that can	4.2.1.1.1	Measure temperature, volume, weight and length using
	Science		be measured.		appropriate tools and units.
4	2. Physical	1. Matter	2. Solids, liquids and gases are states of matter	4.2.1.2.1	Distinguish between solids, liquids and gases in terms of shape and
	Science		that each have unique properties.		volume. For example: Liquid water changes shape depending on
					the shape of its container.
4	2. Physical	1. Matter	2. Solids, liquids and gases are states of matter	4.2.1.2.2	Describe how the states of matter change as a result of heating and
	Science		that each have unique properties.		cooling.
4	2. Physical	3. Energy	1. Energy appears in different forms, including	4.2.3.1.1	Describe the transfer of heat energy when a warm and a cool object
	Science		heat and electromagnetism.		are touching or placed near each other.
4	2. Physical	3. Energy	1. Energy appears in different forms, including	4.2.3.1.2	Describe how magnets can repel or attract each other and how
	Science		heat and electromagnetism.		they attract certain metal objects.
4	2. Physical	3. Energy	1. Energy appears in different forms, including	4.2.3.1.3	Compare materials that are conductors and insulators of heat
	Science		heat and electromagnetism.		and/or electricity. For example: Glass conducts heat well, but is a
					poor conductor of electricity.
4	2. Physical	3. Energy	2. Energy can be transformed within a system	4.2.3.2.1	Identify several ways to generate heat energy. For example:
	Science		or transferred to other systems or the		Burning a substance, rubbing hands together, or electricity flowing
			environment.		through wires.

4	2. Physical	3. Energy	2. Energy can be transformed within a system	4.2.3.2.2	Construct a simple electrical circuit using wires, batteries, and light
	Science		or transferred to other systems or the		bulbs.
			environment.		
4	2. Physical	3. Energy	2. Energy can be transformed within a system	4.2.3.2.3	Demonstrate how an electric current can produce a magnetic
	Science		or transferred to other systems or the		force. For example: Construct an electromagnet to pick up
			environment.		paperclips.
4	3. Earth Science	1. Earth	3. Rocks are an Earth material that may vary in	4.3.1.3.1	Recognize that rocks may be uniform or made of mixtures of
		Structure and	composition.		different minerals.
		Processes			
4	3. Earth Science	1. Earth	3. Rocks are an Earth material that may vary in	4.3.1.3.2	Describe and classify minerals based on their physical properties.
		Structure and	composition.		For example: Streak, luster, hardness, reaction to vinegar.
		Processes			
4	3. Earth Science	2. Interdepen-	3. Water circulates through the Earth's crust,	4.3.2.3.1	Identify where water collects on Earth, including atmosphere,
			oceans and atmosphere in what is known as		ground, and surface water, and describe how water moves through
		Earth system	the water cycle.		the Earth system using the processes of evaporation, condensation
					and precipitation.
4	3. Earth Science	4. Human	1. In order to maintain and improve their	4.3.4.1.1	Describe how the methods people utilize to obtain and use water in
		Interaction with	existence, humans interact with and influence		their homes and communities can affect water supply and quality.
		Earth Systems	Earth systems.		
4	4. Life Science	4. Human	2. Microorganisms can get inside one's body	4.4.4.2.1	Recognize that the body has defense systems against germs,
			and they may keep it from working properly.		including tears, saliva, skin, and blood.
		Living Systems			
4	4. Life Science	4. Human	2. Microorganisms can get inside one's body	4.4.4.2.2	Give examples of diseases that can be prevented by vaccination.
		Interactions with	and they may keep it from working properly.		
		Living Systems			
5	1. The Nature of	1. The Practice of	1. Science is a way of knowing about the	5.1.1.1.1	Explain why evidence, clear communication, accurate record
	Science and	Science	natural world, is done by individuals and		keeping, replication by others, and openness to scrutiny are
	Engineering		groups, and is characterized by empirical		essential parts of doing science.
			criteria, logical argument and skeptical review.		
			criteria, logical argument and skeptical review.		

5	Science and Engineering	Science	1. Science is a way of knowing about the natural world, is done by individuals and groups, and is characterized by empirical criteria, logical argument and skeptical review.	5.1.1.1.2	Recognize that when scientific investigations are replicated they generally produce the same results, and when results differ significantly, it is important to investigate what may have caused such differences. <i>For example:</i> Measurement errors, equipment failures, or uncontrolled variables.
5	1. The Nature of Science and Engineering	1. The Practice of Science	1.Science is a way of knowing about the natural world, is done by individuals and groups, and is characterized by empirical criteria, logical argument and skeptical review.	5.1.1.1.3	Understand that different explanations for the same observations usually lead to making more observations and trying to resolve the differences.
5	1. The Nature of Science and Engineering	1. The Practice of Science	 Science is a way of knowing about the natural world, is done by individuals and groups, and is characterized by empirical criteria, logical argument and skeptical review. 	5.1.1.1.4	Understand that different models can be used to represent natural phenomena and these models have limitations about what they can explain. <i>For example:</i> Different kinds of maps of a region provide different information about the land surface.
5	1. The Nature of Science and Engineering		 Scientific inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations. 	5.1.1.2.1	Generate a scientific question and plan an appropriate scientific investigation, such as systematic observations, field studies, open- ended exploration or controlled experiments to answer the question.
5	1. The Nature of Science and Engineering	1. The Practice of Science	 Scientific inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations. 	5.1.1.2.2	Identify and collect relevant evidence, make systematic observations and accurate measurements, and identify variables in a scientific investigation.
5	1. The Nature of Science and Engineering	1. The Practice of Science	 Scientific inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations. 	5.1.1.2.3	Conduct or critique an experiment, noting when the experiment might not be fair because some of the things that might change the outcome are not kept the same, or that the experiment isn't repeated enough times to provide valid results.
5	1. The Nature of Science and Engineering	3. Interactions Among Science, Engineering, Technology and Society	2. Men and women throughout the history of all cultures, including Minnesota American Indian tribes and communities, have been involved in engineering design and scientific inquiry.	5.1.3.2.1	Describe how science and engineering influence and are influenced by local traditions and beliefs. <i>For example:</i> Substainable agriculture practices used by many cultures.

5	1. The Nature of Science and	3. Interactions Among Science,	 Tools and mathematics help scientists and engineers see more, measure more accurately, 	5.1.3.4.1	Use appropriate tools and techniques in gathering, analyzing and interpreting data. <i>For example:</i> Spring scale, metric
	Engineering	Engineering,	and do things that they could not otherwise		measurements, tables, mean/median/range, spreadsheets, and
		Technology and	accomplish.		appropriate graphs,
		Society			
5	1. The Nature of	3. Interactions	4. Tools and mathematics help scientists and	5.1.3.4.2	Create and analyze different kinds of maps of the student's
	Science and	Among Science,	engineers see more, measure more accurately,		community and of Minnesota. For example: Weather maps, city
	Engineering	Engineering,	and do things that they could not otherwise		maps, aerial photos, regional maps, or online map resources.
		Technology and	accomplish.		
	2. Dhuaisal	Society		52244	
5	2. Physical	2. Motion	1. An object's motion is affected by forces and	5.2.2.1.1	Give examples of simple machines and demonstrate how they
	Science		can be described by the object's speed and the		change the input and output of forces and motion.
5	2. Physical	2. Motion	direction it is moving. 1. An object's motion is affected by forces and	5.2.2.1.2	Identify the force that starts something moving or changes its
	•	2. 101011011	can be described by the object's speed and the	5.2.2.1.2	speed or direction of motion. <i>For example:</i> Friction slows down a
	Science		direction it is moving.		moving skateboard.
5	2. Physical	2. Motion	1. An object's motion is affected by forces and	5.2.2.1.3	Demonstrate that a greater force on an object can produce a
	Science	2. 101011011	can be described by the object's speed and the	5.2.2.1.5	greater change in motion.
	Science		direction it is moving.		
5	3. Earth Science	1. Earth	2. The surface of the Earth changes. Some	5.3.1.2.1	Explain how, over time, rocks weather and combine with organic
		Structure and	changes are due to slow processes and some	0.012.2.12	matter to form soil.
		Processes	changes are due to rapid processes.		
5	3. Earth Science	1. Earth	2. The surface of the Earth changes. Some	5.3.1.2.2	Explain how slow processes, such as water erosion, and rapid
		Structure and	changes are due to slow processes and some		processes, such as landslides and volcanic eruptions, form features
		Processes	changes are due to rapid processes.		of the Earth's surface.
5	3. Earth Science	4. Human	1. In order to maintain and improve their	5.3.4.1.1	Identify renewable and non-renewable energy and material
		Interactions with	existence humans interact with and influence		resources that are found in Minnesota and describe how they are
		Earth Systems	Earth systems.		used. For example: Water, iron ore, granite, sand and gravel, wind,
					and forests.
5	3. Earth Science	4. Human	1. In order to maintain and improve their	5.3.4.1.2	Give examples of how mineral and energy resources are obtained
		Interactions with	existence humans interact with and influence		and processed and how that processing modifies their properties
		Earth Systems	Earth systems.		to make them more useful. For example: Iron ore, biofuels, or coal.

5	3. Earth Science		 In order to maintain and improve their existence humans interact with and influence Earth systems. 	5.3.4.1.3	Compare the impact of individual decisions on natural systems. <i>For example:</i> Choosing paper or plastic bags impacts landfills as well as ocean life cycles.
5	4. Life Science	Function of Living	1. Living things are diverse with many different characteristics that enable them to grow, reproduce and survive.	5.4.1.1.1	Describe how plant and animal structures and their functions provide an advantage for survival in a given natural system. <i>For</i> <i>example:</i> Compare the physical characteristics of plants or animals from widely different environments, such as desert verses tropical, and explore how each has adapted to its environment.
5	4. Life Science	2. Interdepen- dence Among Living Systems	 Natural systems have many components that interact to maintain the living system 	5.4.2.1.1	Describe a natural system in Minnesota, such as a wetland, prairie, or garden, in terms of the relationships among its living and nonliving parts, as well as inputs and outputs. <i>For example:</i> Design and construct a habitat for a living organism that meets its need for food, air and water.
5	4. Life Science	2. Interdepen- dence Among Living Systems	 Natural systems have many parts that interact to maintain the living system 	5.4.2.1.2	Explain what would happen to a system such as a wetland, prairie or garden if one of its parts were changed. <i>For example:</i> Investigate how road salt runoff affects plants, insects and other parts of an ecosystem. <i>Another example:</i> Investigate how an invasive species changes an ecosystem.
5	4. Life Science		 Humans change environments in ways that can be either beneficial or harmful to themselves and other organisms. 	5.4.4.1.1	Give examples of beneficial and harmful human interaction with natural systems. <i>For example:</i> Recreation, pollution, wildlife management.