Science SOL 5.4 Matter

What is matter?

Matter is ANYTHING that takes up <u>space</u> and has <u>mass.</u>

Matter has tiny particles called <u>atoms</u> and <u>molecules.</u> They are too small to be seen with the human eye.

3 States of Matter:

Solids

Have a definite <u>shape</u> and a fixed <u>volume</u>

- Tightly packed molecules that are arranged in a regular <u>pattern</u>
- Molecules *vibrate* in a fixed position
- Example: rocks, ice

What the molecules of a solid look like:

Draw the molecules inside the circle to represent a solid.

Liquids

Have no definite **shape**

- Molecules are <u>farther</u> apart than a solid and are not in any particular pattern or order
- Molecules move and <u>slide</u> over each other
- Examples: **lemonade**, **water**

What the molecules of a liquid look like:

Have no definite **shape**

- It will take the shape of the container and will spread out to <u>fill</u> it
- Molecules are very far **apart**
- Molecules that move about <u>quickly</u> and <u>freely</u>
- Examples: **air, water vapor**

What the molecules of a gas look like:

Changing States of Matter

- For matter to change from one <u>state</u> to another (ex. Liquid to solid, gas to liquid) a change in temperature must happen
- When temperature increases, a liquid can change to a gas, a solid can change to a liquid (ex. Liquid water changing to water vapor)
- When temperature <u>decreases</u>, a liquid can change to a solid, a gas can change to a liquid (ex. Liquid water changing to ice)

Changing States of Matter

Freezing and boiling points of water:

- Water freezes at **0** degrees Celsius
- Water freezes at <u>32</u> degrees Fahrenheit
- Water boils at **100** degrees Celsius
- Water boils at **<u>212</u>** degrees Fahrenheit

Properties of Matter

There are 2 properties of matter:

Physical properties

Chemical properties

Physical Properties

Physical properties are things like:

Chemical Properties

Chemical properties are how one type of matter reacts with another type of matter

Changing Matter

Matter can change in 2 ways:

Physical Change

Physical Change

- A physical change changes what an object looks like but does not change what it is <u>made</u> of.
- Example: Cutting a piece of paper will make it smaller but it is still paper.

Chemical Change

A chemical change is a change that forms a new substance with new properties

Example: Burning a piece of wood creates smoke and ash. It is no longer a piece of wood after it is burned.

Measuring Matter

► There are 2 ways to measure matter:

Volume

Measuring Volume

- Volume is the amount of <u>space</u> that something takes up.
- To find the volume of a solid rectangular object, you must multiply the length x width x height.
- To find the volume of a liquid, you must use a graduated cylinder, measuring cup, etc.
- To find the volume of an irregular object, you can place water in a graduated cylinder, measure the water level, add the object, re-measure the water level, then subtract the 2 amounts.
- Common units used to measure volume: <u>in³</u> (inches cubed or cubic inches, mL (milliliters)

Measuring Volume of a Solid, Rectangular Object

Find the Volume of the solid rectangular object:
Length: 4 in.
Width: 2 in.
Height: 3 in.
Length x Width X Height

4 in. x 2 in. x 3 in. = 24 in.³ (pronounced 24 inches cubed)

> You must ALWAYS show your **units**!!!!

Measuring Volume of a Liquid

- Find the Volume of the liquid inside the graduated cylinder:
- You must read from the bottom of the water line, called the meniscus.
- Also, you must count the lines between the numbers to see what the value of each line is.

Answer: **<u>43</u>** mL (don't forget units!)

Measuring Volume of an Irregular Object

- Find the volume of the irregularly shaped object:
- You must first measure the water level, then add the irregular object, re-measure the water level, then subtract.

Object 2: <u>68 mL – 64 mL = 4 mL</u>

Measuring Mass

Mass is the amount of **matter** in an object.

- Mass is not weight. Weight is the measure of the pull of gravity on an object. Weight can change, mass can not.
- Example: You will weigh 1/6 less on the moon than you do on Earth. You body's mass did not change, the weight did due to the gravitation pull.
- Calculate your weight on the moon:

Measuring Mass

- To measure mass, you must use a balance scale and add the weights on the beams of the scale.
- Common units used to measure mass: grams, kilograms, ounces, or pounds
- Measure the mass of the scale:
- Mass = 300 g + 70 g + 3.3 g =

Density

Density is the amount of <u>mass</u> a substance has.

- A rock will sink to the bottom of a pool because it's density is greater than <u>water.</u>
- A boat can float on water because it's density is <u>less</u> than water.
- Items can have the same <u>volume</u>, but have different densities.
- For example, a pillow case filled with feathers is less dense that the same size pillow case filled with rocks. The volume is the same, the density is different.

Density

- If you look at the picture, you will see a regular can of Pepsi has more density than the same size can of Diet Pepsi.
- The regular Pepsi has greater density than water.
- The Diet Pepsi has less density than water.

Types of Particles in Matter

There are 4 types of particles in matter:

Atoms

- All <u>matter</u> is made up of atoms.
- Atoms can only be seen with a strong <u>microscope.</u>
- All atoms have the same basic parts: protons, neutrons, & electrons.
- Protons & neutrons form the nucleus.
- Electrons orbit (move around) on the outside of the nucleus in the electron cloud.
- Protons have a <u>positive</u> charge, electrons have a <u>negative</u> charge, neutrons have <u>no charge</u>.
- ▶ The majority of the atom's mass is in the **nucleus**.

Elements

- One atom of an element is the smallest unit of an element that retains (keeps) the properties of that element.
- Atoms combine to form <u>elements.</u>
- Each element is given a name, such as, gold, hydrogen, & iron.
- The element's name and symbol identify it.
- Most elements symbols have either 1 or 2 letters, some have 3. (ex. The atomic symbol for oxygen is O and for nickel is Ni.
- The first letter of an atomic symbol is a capital letter and the 2nd and 3rd are lower case letters.
- Every element has an atomic number which is the number of protons in the nucleus. For example, Oxygen has an atomic number of 8. This means there are 8 protons in the nucleus of every Oxygen atom.

Periodic Table of Elements

All elements are arranged on the Periodic Table of Elements in order by their atomic number (number of **protons** in their nucleus.)

The periodic table also includes the element's name, symbol, & atomic mass.

1 IA																	18 VIIIA			
1A 1	Periodic Table of the Elements															8A 2				
H	2							dbio			nome	13	14	15	16	17	He			
Hydrogen 1.008	IIA 2A							Atomic Number				IIIA 3A	IVA 4A	VA 5A	VIA 6A	VIIA 7A	Hellum 4.003			
³ ;	4 Po							Sv	nbol			5 D	6	7 NI	° •	9 E	10 No			
Lithium	Beryllium							N	me			Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon			
6.941 11	9.012							Atomi	c Mass			10.811	12.011	14.007	15.999	18.998 17	20,180			
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	P	S	CI	Ar			
Sodium 22.990	Magnesium 24.305	IIIB 3B	4B	VB 5B	VIB 6B	VIIB 7B	(7	IB 1B	IIB 2B	Aluminum 26.982	Silicon 28.086	Phosphorus 30.974	Sulfur 32.066	Chlorine 35.453	Argon 39.948			
¹⁹	20	21 So	²² T i	23 V	24 Cr	25	26 Eo	27	28 NI	29	30 7 n	31 Ca	32 Go	33 A c	34 So	35 Br	36 Kr			
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese		Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic 74 000	Selenium	Bromine	Krypton			
39.098	38	44.956 39	47.867	41	42	43	44	45	46	63.546 47	48	49	50	51	52	53	54.798			
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe			
Rubidium 84.468	Strontium 87.62	88.906	91.224	92.906	Molybdenum 95.95	98.907	Ruthenium 101.07	Rhodium 102.906	Palladium 106.42	Silver 107.868	Cadmium 112.411	114.818	118.711	Antimony 121.760	127.6	126.904	Xenon 131.294			
55 Ce	Ba	57-71		73 Та	⁷⁴ W	75 Ro	76 0e	⁷⁷ Ir	78 Pt	79 Δ 11	Ha	⁸¹ TI	Ph	⁸³ Ri	Po	85 A t	86 Rn			
Cestum 122 005	Bartum		Hafnium	Tantalum	Tungsten	Rhenium 196 207	Osmium	Iridium	Platinum	Gold	Mercury 200 502	Thailium	Lead	Bismuth	Polonium	Astatine	Radon 222.019			
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118			
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo			
223.020	226.025		[261]	[262]	[266]	[264]	[269]	[268]	[269]	[272]	[277]	unknown	[289]	unknown	[298]	unknown	unknown			
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71				
	Lantha Seri	anide L	.a C	Ce F	Pr N	ld P	m S	im E	u C	ad 1	[b [C	Dy F	lo [Er T	m Y	′b L	u			
		134	8.905 14	0.116 Prasec).908 144	1.243 Prom	4.913 15	i0.36 15	1.964 15	57.25 15	8.925 162	2.500 16	4.930 16	7.259 168	3.934 17:	8.055 174	.967			
	Actin	nide 89	C T	h F	2a ⁹²	J 93	In ⁹⁴		m°C	m ⁹	3k [%] (Cf F	-s F				r			
	1000	00	· ·	denter distant		nium Nep	tunium Plut	tonium Ame	ricium Ci	urtum Berl	kelium Calif	ornium Einst	einium Fer	mium Mend	elevium Nob	elium Lawre	ncium			
	Seri	Act 22	Inium The 7.028 23	2 038 23	1.036 233	029 23	227.028 232.038 231.036 238.029 237.048 244.064 243.061 247.070 247.070 251.080 [254] 257.095 258.1 259.101 [262]													
	Seri	Act 22	Inium The 7.028 23	2.038 Prota 2.038 23	1.036 238	.029 23	7.048 244	4.064 24	3.061 24	7.070 24	7.070 25	1.080 [2	254] 25	7.095 25	58.1 259	9.101 [2	52]			
	Seri	Act 22	Inium The 7.028 233	2.038 23	1.036 238	sition	7.048 244 Basic	4.064 24	3.061 24	7.070 24	7.070 25 ⁻	1.080 [2	254] 25	7.095 25	58.1 259	9.101 [2	52]			
	Seri	Act 22	Alkali Metal	Alkalin Earti	ne Tran	sition stal	7.048 244 Basic Metal	4,064 243 Semimetal	Nonmeta	7.070 24 al Halog	7.070 25 gen N	oble La àas La	enthanide	Actinide	58.1 251	9.101 [2	52]			

Periodic Table of Elements

Label the Periodic Table of Elements square for Silver.

How many protons does the element of Silver have?

79

GOLE

- To figure out the number of protons of an atom, look at the atomic number on the periodic table (number of protons for Gold is <u>79</u>.)
- To figure out the number of electrons of an atom, look at the atomic number on the periodic table (it will be the same number as the protons, for Gold it will be <u>79</u>.)
- To figure out the number of neutrons of an atom, you must look at the atomic weight of the atom on the periodic table, and then subtract the atomic number.
- For Gold, you will subtract 197-79=<u>118</u>. So the number of neutrons for Gold is <u>118</u>.

Drawing an Atom

- Look at the element block for Boron on the Periodic Table.
- Figure out the numbers for the protons, electrons, and neutrons for a Boron atom.
- Protons = $\underline{5}$
- Electrons = $\underline{5}$
- Neutrons = <u>6 (11-5)</u>

Drawing an Atom

- Now that we have figured out the numbers of the particles in an atom, we can start to draw.
- Always start with drawing the nucleus first.
- Add the protons and neutrons inside the nucleus.
- Add the electrons on the out side of the nucleus. The electrons are placed in the electron cloud and we use rings or circles to represent the electron cloud. Each ring has a specific amount of electrons a ring can hold. (See picture)

Drawing an Atom

- Our atom of Boron should look something like this:
- Protons: <u>5</u>
- Electrons: 5
- Neutrons: **6**

Molecules

Two or more **<u>atoms</u>** that are held together form a molecule.

- Atoms of the same <u>element</u> can form a molecule or atoms from different elements can form a molecule
- For example: 2 atoms of Oxygen can form an Oxygen molecule, <u>O2</u>.
- The 2 behind the O is called a <u>subscript</u>. It shows us how many atoms of each element are in the molecule.

Molecules

Models of an Oxygen molecule:

Compounds

Atoms of 2 or more elements join together to form a <u>compound</u>.

- An Oxygen atom and 2 Hydrogen atoms can form a <u>water</u> molecule, H₂O.
- H₂O is the **formula** for water. It shows us that there are 2 atoms of hydrogen and 1 atom of oxygen.
- If there is only 1 atom of an element in a compound, we do NOT write a 1 for a subscript. We only write the symbol of the element.

Molecules & Compounds

Now draw a molecule of Oxygen and a compound of water:

Oxygen Molecule

Water Molecule

Mixture

- A mixture is a combination of 2 or more substances that do not lose their identifying characteristics when combined
- They are <u>mixed</u>, not joined chemically.
- They can also be easily **separated**.
- Examples: **<u>salad</u>**, milk and cereal, trail mix

Solution

- A solution is a mixture of molecules made by dissolving one substance into another substance.
- All solutions are mixtures but not all mixtures are <u>solutions.</u>
- It is possible to <u>separate</u> the 2 substances, but not very easily.
- Examples: sugar dissolved in tea or Kool-Aid
- The sugar is still there even though it is dissolved and you don't see it.
- In order to separate the solution, you would have to <u>evaporate</u> the liquid

Solution

- There are 2 parts to a solution: solutes & solvents.
- A <u>solute</u> is a substance that dissolves in another substance. Ex. Sugar dissolving in water. The sugar is the solute
- A solvent is a substance that dissolves a solute. Ex. Sugar dissolving in water. The water is the solvent.

Solution

Solution

- There are 2 kinds of solutions: diluted and concentrated.
- A <u>diluted</u> solution is a weak solution that contains a small amount of solute and a large amount of solvent. Ex. Putting a tablespoon of sugar in a gallon of sweet tea.
- A <u>concentrated</u> solution is a strong solution that contains a small amount of a solvent and a large amount of a solute. Ex. Putting 4 cups of sugar in a gallon of sweet tea.

Suspension

- A suspension is a mixture in which particles of a substance are scattered in another substance but NOT dissolved.
- Examples: oil & vinegar salad dressing, orange juice, peanut butter, & <u>milk.</u>

