Physical Science - Chemistry (one semester) High School Standards, Supporting Skills, Assessments, and Resources Indicator 1: Describe structures and properties of, and changes in, matter | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|---|--|-------------|------------| | (Analysis) | 9-12.P.1.1. Students are able to use the Periodic Table to determine the atomic structure of elements, valence number, family relationships, and regions (metals, nonmetals, and metalloids). | Properties of Atoms and the Periodic Table Determine protons, neutrons, electrons, mass number, and atomic number from the Periodic Table. Determine the number of valence electrons for elements in the main (s&p) blocks of the Periodic Table. Identify the relative metallic character of an element based on its location on the Periodic Table. Structure of the Atom Scientific Shorthand Atomic Components Quarks Models | | Chapter 17 | | • Democritus | |--| | • Thomson | | Rutherford | | • Bohr | | Quantum (electron cloud) | | | | Masses of Atoms | | - Atomic Number | | - Mass Number | | | | Isotopes | | Organize the Elements | | - Mendeleev's Table | | - Moseley's Improvement of
Periodic Table | | | | Atoms and the Periodic Table | | - Electron Cloud Structure | | - Energy Leels | | - Rows on the Table | | - Electorns Dot Diagrams | | | | | ı | |--|---| | Regions of the Periodic Table - Groups (Families) - Periods - Metals, Nonmetals, Metalloids | | | Elements in the Universe | | | Radioactivity and Nuclear
Reactions | Chapter 18 | | Radioactivity | | | - Nucleus | | | Protons and Neutrons | | | Strong Force | | | Radioactivity | | | Elements and Their Properties Metals - Properties of Metals • Ionic Bonding | Chapter 19 | | | - Groups (Families) - Periods - Metals, Nonmetals, Metalloids Elements in the Universe Radioactivity and Nuclear Reactions Radioactivity - Nucleus - Protons and Neutrons - Strong Force - Radioactivity Elements and Their Properties Metals - Properties of Metals | | | Non Metals | |----------|---------------------------| | | - Properties of Nonmetals | | | - Hydrogen | | | - Halogen | | | - Noble Gasses | | | | | | Mixed Groups | | | - Metalloids | | | - Boron Group | | | - Carbon Group | | | Allotropes of Carbon | | | - Nitrogen Group | | | - Oxygen Group | | | - Synthetic Elements | | | Transuranium elements | | | Why make them? | | | Seeking Stability | | <u> </u> | | | | 9-12.P.1.2. Students are | Metals | | Chapter 19 | |-----------------|---|------------------------------------|--|------------| | | able to describe ways that atoms combine. | - Metallic Bonding | | | | | Name and write | Alkali Metals | | | | | formulas for binary | Alkaline Earth Metals | | | | | ionic and covalent | Transition Elements | | | | | compounds. | Inner Transition Elements | | | | | Example: sodium chloride (NaCl), | Lanthanides | | | | | carbon dioxide (CO ₂) | • Actinides | | | | | • Compare the roles of | Metals in the Crust | | | | (Comprehension) | electrons in covalent, ionic, and metallic bonding. Discuss the special nature of carbon covalent bonds. | Ores: minerals and mixtures | | | | (Comprehension) | | Stability in Bonding | | Chapter 20 | | | | Combined Elements | | | | | | - compounds | | | | | | - new properties | | | | | | Formulas | | | | | | Atomic Stability | | | | | | - Unique Noble Gases | | | | | | - Chemical Stability | | | | | | - Energy Levels and other elements | | | | | | - Outer Levels – Getting their | | | | f:11 | | |--|--| | | | | - Stability is reached | | | Types of bonds | | | - Gain or loss of electorns | | | - Ionic Bond | | | Zero Net Charge | | | - Sharing Electrons | | | Single Covalent Bond | | | Multiple Bonds | | | Unequal Sharing | | | • Tug-of-War | | | Nonpolar vs. Polar | | | Writing Formulas and Naming
Compounds | | | - Binary Ionic compounds | | | • are electrons gained or lost? | | | Oxidation Numbers | | | Compounds are Neutral | | | Writing Formulas | | | Writing Names | | | | Types of bonds - Gain or loss of electorns - Ionic Bond • Zero Net Charge - Sharing Electrons • Single Covalent Bond • Multiple Bonds • Unequal Sharing • Tug-of-War • Nonpolar vs. Polar Writing Formulas and Naming Compounds - Binary Ionic compounds • are electrons gained or lost? • Oxidation Numbers • Compounds are Neutral • Writing Formulas | | | | Compounds with Complex Ions Writing Names Writing Formulas Compounds with Added Water Common Hydrates Naming Binary Covalent Compounds Using Prefixes | | |---------------|--|---|------------| | (Application) | 9-12.P.1.3. Students are able to predict whether reactions will speed up or slow down as conditions change. Examples: temperature, concentration, surface area, and catalysts | Classifying Chemical Reactions - Combustion Reaction - Synthesis Reactions - Decompositions Reactions - Single Displacement - Activity Series - Double Displacement - Oxidation-Reduction Reactions | Chapter 21 | | | | Chemical Reactions and Energy | | |-----------------|--|--|------------| | | | - Exothermic | | | | | - Endothermic | | | | | - Catalyst vs. Inhibitors | | | | | Factors affecting the rate of reaction | | | | 9-12.P.1.4. Students are | Chemical Reactions | Chapter 21 | | | able to balance chemical equations by applying the | - Chemical Change | | | | Law of Conservation of | Describe chemical reactions | | | | Matter. | Conservation of mass | | | | • Trace number of particles in diagrams | Lavoisier's Contributions | | | (Application) | and pictures of | Father of Modern Chemistry | | | | balanced equations. | Nomenclature | | | | Example: Write out | - Writing Equations | | | | an equation with | - Unit Managers | | | | symbols: | * Metals and the atmosphere | | | | $Mg + 2HCL \rightarrow MgCl_2 + 2H_2$ | | | | | 9-12.P.1.5. Students are | Nature of Matter | Chapter 15 | | (Comprehension) | able to distinguish among chemical, physical, and | - Composition of matter | | | | nuclear changes. | • pure substances | | | | Differentiate | elements & compounds | | | | between physical and chemical properties | - Mixtures | | | used to describe matter. | Heterogeneous vs. HomogeneousSolutions, Colloid, Suspension | | |---|--|------------| | Identify key indicators of | Rate of mixing | | | chemical and physical changes. | - Properties of Matter | | | Describe the effects of changing pressure, | Physical Properties-Appearance vs Behavior | | | volume, or | Tippourumos (s Demartor | | | temperature upon | - Physical Change | | | gases. | Identification | | | • Identify | • Separation | | | characteristics of a solution and factors | - Chemical Properties | | | that affect the rate of | - Chemical Changes | | | solution formation. | - Conservation of Mass | | | Explain the differences among | Behaviors of Gases | Chapter 16 | | nuclear, chemical, | - pressure | | | and physical changes at the atomic level. | - Boyle's Law | | | | - Charles' Law | | | Examples: solute, solvent, | Test the viscosity of common liquids | | | concentrated, dilute, | Radioactivity | Chapter 18 | | saturated,
unsaturated, | - isotopes | | | supersaturated | - Stable vs. Unstable | | | Factors affecting | | | | rate: agitation, | - Nucleus Numbers | | |-------------------------|----------------------------|--| | heating, particle size, | Discovery of Radioactivity | | | pictures of particles | Nuclear Decay | | | | - Nuclear Radiation | | | | - Alpha Particles | | | | • damage | | | | smoke detectors | | | | | | | | • transmutation | | | | - Beta Particles | | | | • damage | | | | - Gamma Rays | | | | - Radioactive Half-Life | | | | - Radioactive Dating | | | | • carbon dating | | | | uranium dating | | | | Detecting Radioactivity | | | | - Radiation Detectors | | | | Cloud Chambers | | | | Bubble Chambers | | | | • Electroscopes | | | | - Measuring Radiation | | | Geiger Counters | |------------------------------------| | - Background Radiation | | Sources of Background Radiation | | Radiation in Your Body | | Nuclear Reactions | | - Nuclear Fission | | Mass and energy | | Chain reactions | | - Nuclear Fusion | | Temperature and fusion | | Nuclear Fusion and the sun | | - Nuclear Reactions in Medicine | | Iodine tracers in the thyroid | | Treating cancer with radioactivity | | | #### Physical Science Performance Descriptors | Terror mance Descriptors | | | | | |--------------------------|---|--|--|--| | | High school students performing at the advanced level: | | | | | | predict the type of bonds formed as elements combine; | | | | | | balance chemical equations involving polyatomic ions; | | | | | Advanced | analyze and solve a problem involving velocity, acceleration, force, work, energy, or power; | | | | | | construct or design a model that illustrates the Law of Conservation of Energy to show energy changes | | | | | | from potential to kinetic in doing work; | | | | | | describe electrical effects in terms of motion and concentrations of charged particles. | | | | | | High school students performing at the proficient level: | | | | | | use the Periodic Table to determine the properties of elements and the ways they combine; | | | | | | given a variable, predict whether reactions will speed up or slow down as conditions change; | | | | | | balance simple chemical equations; | | | | | | describe chemical, physical, and nuclear changes at the atomic and macroscopic levels; | | | | | Proficient | calculate velocity, acceleration, force, work, energy, and power given the formulas; | | | | | | • given the forces acting on an object, predict its motion using Newton's Laws; | | | | | | apply the Law of Conservation of energy to show energy changes from potential to kinetic in doing | | | | | | work; | | | | | | describe how characteristics of waves are related to one another; | | | | | | describe electrical effects in terms of motion and concentrations of charged particles. | | | | | | High school students performing at the basic level: | | | | | | • use the Periodic Table to determine the properties of the 1 st 18 elements; | | | | | | provide the coefficients for an unbalanced synthesis or decomposition equation; | | | | | Dogio | identify chemical and physical changes at the macroscopic level; | | | | | Basic | calculate velocity and force given the formulas; | | | | | | given an example, identify which of Newton's Laws is illustrated; | | | | | | • identify the characteristics of waves; | | | | | | identify electricity as movement of charged particles. | | | | #### Core High School Nature of Science Standards, Supporting Skills, Assessments, and Resources Indicator 1: Understand the nature and origin of scientific knowledge. | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|--|---|-------------|-----------| | (Evaluation) | 9-12.N.1.1. Students are able to evaluate a scientific discovery to determine and describe how societal, cultural, and personal beliefs influence scientific investigations and interpretations. | Visualizing with Models Scientific Theories and Laws Examples: telescope, birth control pill, penicillin, electricity • Recognize scientific knowledge is not merely a set of static facts but is dynamic and affords the best current explanations. Examples: spontaneous generation, relativity, geologic time • Discuss how progress in science can be affected by social issues. | | Chapter 1 | | | 9-12.N.1.2. Students are able | Scientific Method | (| Chapter 1 | |-------------|---|--|---|-----------| | | to describe the role of observation and evidence in | Starting a problem | | | | | the development and | Researching/gathering info | | | | | modification of hypotheses, theories, and laws. | Hypothesis | | | | | | Variables | | | | | | Constants and controls | | | | | | Analyzing data | | | | (Synthesis) | | Drawing conclusions | | | | | | Research, communicate, and
support a scientific argument. | | | | | | Recognize and analyze
alternative explanations and
models. | | | | | | Evaluate the scientific
accuracy of information
relevant to a specific issue
(pseudo-science). | | | Indicator 2: Apply the skills necessary to conduct scientific investigations. | Bloom's | | Supporting Skills | Assessments | Resources | |-------------|--|---------------------------------|-------------|-----------| | Taxonomy | Standard | | | | | Level | | | | | | | 9-12.N.2.1. Students are | What is science | | Chapter 1 | | | able to apply science process skills to design and | - categories of science | | | | | conduct student | - Investigations | | | | | investigations. | Scientific Method | | | | | | Standards of Measurement | | | | | | Units and standards | | | | | | Measurement systems | | | | (Synthesis) | | - International System of Units | | | | (Symmesis) | | - SI Prefixes | | | | | | - Converting SI units | | | | | | Measuring Distance | | | | | | Measuring Volume | | | | | | Measuring Matter | | | | | | - density | | | | | | - derived units | | | | | | Measuring time and temperature | | | | | T | |--|------------| | - Kelvin vs. Fahrenheit | | | Communicating with graphs | | | • visual display | | | • line graph | | | • bar graph | | | • circle graph | | | Using Scientific Method | Chapter 16 | | - Testing the viscosity of common | | | liquids | | | | | | Identify the questions and
concepts to guide the
development of hypotheses. | | | Analyze primary sources of
information to guide the
development of the procedure. | | | Select and use appropriate
instruments to extend
observations and measurements. | | | Revise explanations and models
based on evidence and logic. | | | Use technology and mathematic
skills to enhance investigations,
communicate results, and | | | | | defend conclusions. | | |---------------|--|--|--| | | | Examples: | | | | | Computer-based data collection | | | | | Graphical analysis and representation | | | | | Use appropriate technology to
display data (i.e. spreadsheets,
PowerPoint, web). | 9-12.N.2.2. Students are | Lab safety | | | | able to practice safe and effective laboratory techniques. | Investigation Design | | | (Application) | | Density (accuracy vs. precision) | | | | • | Open-ended Density | | | | | (Archimede's Principle) | | | | | Handle hazardous materials properly. | | | | | Use safety equipment | | | correctly. | | |---|--| | Practice emergency procedure. | | | Wear appropriate attire. | | | Practice safe behaviors. | | | | | | | | #### Core High School Nature of Science Performance Descriptors | | High school students performing at the advanced level: | |------------|---| | Advanced | • given a scientific discovery, evaluate how different societal, cultural, and personal beliefs influenced | | Auvanceu | the investigation and its interpretation; | | | design and conduct an investigation using an alternative student- developed hypothesis. | | | High school students performing at the proficient level: | | | • given a scientific discovery narrative, determine and describe how societal, cultural, and personal | | Proficient | beliefs influenced the investigation and its interpretation; | | | describe the role of observation and evidence in the development and modification of hypotheses, | | | theories, and laws; then apply science process skills to design and conduct student investigations. | | | High school students performing at the basic level: | | | describe the role of observation in the development of hypotheses, theories, and laws and conduct | | Basic | student investigations; | | | • given a scientific discovery narrative, identify the cultural and personal beliefs that influenced the | | | investigation. | ## Core High School Science, Technology, Environment, and Society Standards, Supporting Skills, and Examples Indicator 1: Analyze various implications/effects of scientific advancement within the environment and society. | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|--|---|-------------|-----------| | (Application) | 9-12.S.1.1. Students are able to explain ethical roles and responsibilities of scientists and scientific research. | Ethical Issues Examples: • Sharing of data Accuracy of data Acknowledgement of sources Following laws Animal research Human research Managing hazardous materials and wastes | | Chapter 1 | | (Evaluation) | 9-12.S.1.2. Students are able to evaluate and describe the impact of scientific discoveries on historical events and social, economic, and ethical issues. | Examples: cloning, stem cells, gene splicing, nuclear power, patenting new life forms, emerging diseases, AIDS, resistant forms of bacteria, biological and chemical weapons, global warming, and alternative fuels | | | ### Core High School Science Technology, Environment, and Society Performance Descriptors | | High school students performing at the advanced level: | |------------|---| | Advanced | modify a technology taking into consideration limiting factors of design; | | | given a narrative of a scientific discovery, defend a position on the impact of the ethical issues. | | | High school students performing at the proficient level: | | | given a narrative of a scientific discovery, identify and evaluate the immediate and long-term | | | consequences of scientific issues; | | Proficient | identify and explain ethical roles and responsibilities of scientists conducting a given research project.; | | | evaluate factors that could limit technological design; | | | • given a narrative description of a resource, analyze and describe the benefits, limitations, cost, and | | | consequences involved in its use, conservation, or recycling. | | | High school students performing at the basic level: | | | given a narrative of a scientific discovery, identify the immediate consequences of scientific issues; | | Basic | identify ethical roles and responsibilities concerning a given research project; | | Dasic | identify factors that could limit technological design; | | | • given a narrative description of a resource, describe a benefit and limitation involved in its use, | | | conservation, or recycling. |