Sciences assessment criteria: Year 1 ## Criterion A: Knowing and understanding #### Maximum: 8 At the end of year 1, students should be able to: - outline scientific knowledge i. - ii. apply scientific knowledge and understanding to solve problems set in familiar situations and suggest solutions to problems set in unfamiliar situations - interpret information to make scientifically supported judgments. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | The student is able to: select scientific knowledge select scientific knowledge and understanding to suggest solutions to problems set in familiar situations apply information to make judgments, with limited success. | | 3–4 | The student is able to: recall scientific knowledge apply scientific knowledge and understanding to suggest solutions to problems set in familiar situations apply information to make judgments. | | 5–6 | The student is able to: i. state scientific knowledge ii. apply scientific knowledge and understanding to solve problems set in familiar situations iii. apply information to make scientifically supported judgments. | | 7–8 | The student is able to: outline scientific knowledge apply scientific knowledge and understanding to solve problems set in familiar situations and suggest solutions to problems set in unfamiliar situations iii. interpret information to make scientifically supported judgments. | 30 Sciences guide 👪 # Criterion B: Inquiring and designing #### Maximum: 8 At the end of year 1, students should be able to: - i. outline an appropriate problem or research question to be tested by a scientific investigation - ii. outline a testable prediction using scientific reasoning - iii. outline how to manipulate the variables, and outline how data will be collected - iv. design scientific investigations. | Achievement
level | Level descriptor | |----------------------|--| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | The student is able to: | | | i. select a problem or question to be tested by a scientific investigation | | | ii. select a testable prediction | | | iii. state a variable | | | iv. design a method with limited success. | | 3–4 | The student is able to: | | | i. state a problem or question to be tested by a scientific investigation | | | ii. state a testable prediction | | | iii. state how to manipulate the variables, and state how data will be collected | | | iv. design a safe method in which he or she selects materials and equipment. | | | The student is able to: | | | i. state a problem or question to be tested by a scientific investigation | | | ii. outline a testable prediction | | 5–6 | iii. outline how to manipulate the variables, and state how relevant data will be collected | | | iv. design a complete and safe method in which he or she selects appropriate materials and equipment . | | | The student is able to: | | | i. outline a problem or question to be tested by a scientific investigation | | | ii. outline a testable prediction using scientific reasoning | | 7–8 | iii. outline how to manipulate the variables, and outline how sufficient, relevant data will be collected | | | iv. design a logical, complete and safe method in which he or she selects appropriate materials and equipment. | Sciences guide ## Criterion C: Processing and evaluating #### Maximum: 8 At the end of year 1, students should be able to: - present collected and transformed data - ii. interpret data and outline results using scientific reasoning - iii. discuss the validity of a prediction based on the outcome of the scientific investigation - discuss the validity of the method iv. - describe improvements or extensions to the method. ٧. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | The student is able to: | | | i. collect and present data in numerical and/or visual forms | | | ii. interpret data | | | iii. state the validity of a prediction based on the outcome of a scientific investigation, with limited success | | | iv. state the validity of the method based on the outcome of a scientific investigation, with limited success | | | v. state improvements or extensions to the method that would benefit the scientific investigation, with limited success . | | | The student is able to: | | | i. correctly collect and present data in numerical and/or visual forms | | | ii. accurately interpret data and outline results | | 3–4 | iii. state the validity of a prediction based on the outcome of a scientific investigation | | | iv. state the validity of the method based on the outcome of a scientific investigation | | | v. state improvements or extensions to the method that would benefit the scientific investigation. | | | The student is able to: | | 5–6 | i. correctly collect, organize and present data in numerical and/or visual forms | | | ii. accurately interpret data and outline results using scientific reasoning | | | iii. outline the validity of a prediction based on the outcome of a scientific investigation | | | iv. outline the validity of the method based on the outcome of a scientific investigation | | | v. outline improvements or extensions to the method that would benefit the scientific investigation. | 32 Sciences guide 👪 | Achievement
level | Level descriptor | |----------------------|--| | 7–8 | The student is able to: | | | i. correctly collect, organize, transform and present data in numerical and/or visual forms | | | ii. accurately interpret data and outline results using correct scientific reasoning | | | iii. discuss the validity of a prediction based on the outcome of a scientific investigation | | | iv. discuss the validity of the method based on the outcome of a scientific investigation | | | v. describe improvements or extensions to the method that would benefit the scientific investigation. | ### Criterion D: Reflecting on the impacts of science #### Maximum: 8 At the end of year 1, students should be able to: - i. summarize the ways in which science is applied and used to address a specific problem or issue - ii. describe and summarize the various implications of using science and its application in solving a specific problem or issue - iii. apply scientific language effectively - iv. document the work of others and sources of information used. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | The student is able to, with limited success: i. state the ways in which science is used to address a specific problem or issue ii. state the implications of using science to solve a specific problem or issue, interacting with a factor iii. apply scientific language to communicate understanding iv. document sources. The student is able to: | | 3–4 | i. state the ways in which science is used to address a specific problem or issue ii. state the implications of using science to solve a specific problem or issue, interacting with a factor iii. sometimes apply scientific language to communicate understanding iv. sometimes document sources correctly. | | 5–6 | i. outline the ways in which science is used to address a specific problem or issue ii. outline the implications of using science to solve a specific problem or issue, interacting with a factor iii. usually apply scientific language to communicate understanding clearly and precisely iv. usually document sources correctly. | | 7–8 | i. summarize the ways in which science is applied and used to address a specific problem or issue ii. describe and summarize the implications of using science and its application to solve a specific problem or issue, interacting with a factor iii. consistently apply scientific language to communicate understanding clearly and precisely iv. document sources completely. | Sciences guide 🧃