Advanced High School Physical Science - Chemistry (one year) Standards, Supporting Skills, Assessments, and Resources Indicator 1: Describe structures and properties of, and changes in, matter | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|---|--|-------------|----------------------| | (Analysis) | 9-12.P.1.1. Students are able to use the Periodic Table to determine the atomic structure of elements, valence number, family relationships, and regions (metals, nonmetals, and metalloids). Determine protons, neutrons, electrons, mass number, and atomic number from the Periodic Table. Determine the number of valence electrons for elements in the main (s&p) blocks of the Periodic Table. Identify the relative | Early Theories of Matter Early Philosophers John Dalton Defining the Atom Subatomic Particles and the Nuclear Atom Discovering the electron The nuclear atom How Atoms Differ Atomic number Isotopes and mass number Mass of individual atoms Development of the modern Periodic Table History of the Periodic Table | | Chapter 4 Chapter 6 | | metallic character of | Development | | |---|------------------------------------|-----------| | an element based on its location on the | - Newland | | | Periodic Table. | - Meyer Mendevleev | | | | - Moseley | | | | Modern Periodic Table | | | | - Classifying Elements | | | | Group (family) | | | | -Alkali | | | | -Alkaline Earth | | | | -Halogen | | | | -Noble Gases | | | | Metal vs. Nonmetal | | | | Representative vs. Transition | | | | Transition vs. Inner Transition | | | | -Lanthanide vs. Actinide | | | | Classifications of Elements | | | | Organize elements by configuration | Chapter 6 | | | - Valance Electrons | | | | - Valance Electrons and Perios | | | | - Valence Electrons and | | | | | Group Numbers Periodic Trends • Atomic Radius -period vs. group trend • Ionic Radius -period vs. group trend • Ionization energy - period vs. group trend • Electronegativity - period vs. group trend | | |-----------------|---|---|---------------| | (Comprehension) | 9-12.P.1.2. Students are able to describe ways that atoms combine. Name and write formulas for binary ionic and covalent compounds. Example: sodium | Forming Chemical Bonds | Chapter 8 & 9 | | chloride (NaCl), carbon dioxide (CO ₂) • Compare the roles of electrons in covalent, ionic, and metallic bonding. • Discuss the special nature of carbon covalent bonds. | Properties of Ionic Bonds energy and the Ionic Bond Names and formulas for Ionic Compounds formulas for Ionic compounds determine the charge | | | |--|--|--|--| |--|--|--|--| | Naming binary molecular | | |------------------------------------|------------| | compounds | | | Naming acids | | | - binary | | | - ternary or oxyacids | | | Writing formulas from names | | | Forces of Attraction | | | Intramolecular Forces | | | - ionic | | | - covalent | | | - metallic | Chapter 13 | | Intermolecular Forces | | | - Dispersion Force (London Forces) | | | - Dipole-Dipole | | | - Hydrogen Bonds | | | Liquids and Solids | | | • Liquids | | | - density and comopession | | | - fluidity | | | - viscosity | | | - viscosity and temp | |--| | - surface tension | | - capillary action | | | | Solids | | • density | | crystalline solids | | - unit cells | | simple vs. body-centered vs. Face centered | | molecular solids | | covalent network solids | | • ionic solids | | metallic solids | | Phase Changes | | endothermic phase changes | | - melting | | - vaporization | | - sublimation | | exothermic phase changes | | - condensation | | sublimationexothermic phase changes | | | | - deposition | | |---------------|-------------------------------------|--|------------| | | | - freezing | | | | | phase diagram | 9-12.P.1.3. Students are | Classifying shamical reactions | Chapter 10 | | | able to predict whether | Classifying chemical reactions | Chapter 10 | | | reactions will speed up or | synthesis reaction | | | | slow down as conditions | combustion reaction | | | (Application) | change. | decomposition reaction | | | | Examples: | replacement reactions | | | | temperature, concentration, surface | - single vs. double | | | | area, and catalysts | Rate of reaction factors | | | | 9-12.P.1.4. Students are | Reaction and Equations | Chapter 10 | | | able to balance chemical | _ | Chapter 10 | | | equations by applying the | evidence of chemical reactions | | | | Law of Conservation of | representing chemical | | | (Application) | Matter. | reactions | | | | • Trace number of | - word equation | | | | particles in diagrams and | - skeleton equation | | | | pictures of balanced | - chemical equation | | | | | | | | | equations. | balancing chemical equations | | | |-----------------|--|--|-----|---------| | | Example: Write out
an equation
with symbols:
Mg + 2HCL →
MgCl ₂ + 2H ₂ | conversation of mass | Cha | apter 3 | | | 9-12.P.1.5. Students are able to distinguish among chemical, physical, and nuclear changes. | Properties of Matter • Pure substances - element vs. compound | Ch | apter 3 | | (Comprehension) | Differentiate between physical and chemical properties used to describe matter. Identify key indicators of chemical and physical changes. | physical properties of matter intensive vs. extensive chemical properties of matter observing properties of matter states of matter gas vs. liquid vs. solid Changes in Matter | | | | | Describe the effects of changing pressure, volume, or temperature upon gases. | physical changes chemical changes evidence of chemical reaction | | | | | Identify characteristics of a solution and factors | Mixtures of Matter | | | | • explain the behavior of gases | |---------------------------------| |---------------------------------| | lovy donaity | |---------------------------------------| | - low density | | - compession and expansion | | - diffusion vs. effusion | | Graham's Law of Effusion | | Gas Pressure | | - measuring air pressure | | -Barometer vs. manometer | | - units of pressure | | - Dalton's Law of Partial Pressure | | | | Unstable Nuclei and radioactive Decay | | Radioactivity | | Types of radiation | | - Alpha Radiation | | - Beta Radiation | | - Gamma Radiation | | - Nuclear Stability | | Nuclear Radiation | | Discovery of radioactivity | | Types of radiation | | | | - Alpha | |---| | - Beta | | - Gamma | | Radioactive Decay | | Nuclear Stability | | Types of Radioactive Decay | | - Alpha | | - Beta | | - Gamma | | - Positron Emission | | - Electron Capture | | writing and balancing nuclear equations | | Radioactive Series | | | | Transmutation | | induced transmutation | | radioactive decay rates | | radioactive dating | | Fission and Fusion | | nuclear reactions and energy | | nuclear reactions and energy | | nuclear fission | |---| | nuclear reactor | | nuclear fusion | | Applications and effects of Nuclear Reactions | | detecting radioactivity | | uses of radiation | | biological effects of radiation | | | Indicator 3: Analyze interactions of energy and matter. | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|---|---|-------------|------------| | (Application) | 9-12.P.3.1. Students are able to describe the relationships among potential energy, kinetic energy, and work as applied to the Law of | States of Matter - Kinetic Theory - Thermal Energy - Average Kinetic Energy | | Chapter 16 | | Conservation of Energy. | Thermal Expansion | | |--|-----------------------------------|--| | Describe how | Solid or Liquid? | | | energy can be transferred and | - Amorphous Solid vs. Liquid | | | transformed to | Crystals | | | produce useful | How thermal energy affects matter | | | work. | Properties of fluids | | | Examples: | - Archimede's Principle | | | Diagram simple energy transfers, | - Pascal's Principle | | | describing the objects and the forms of energy gained and lost. | - Bernoulli's Principle | | | Use simple machines as an example of the transmission of energy. | | | | Given the formulas, calculate the mechanical advantage and efficiency of selected systems. | | | | Explain methods of heat transfer. | | | | Examples: | | | | conductio | | | |------------|--|--| | n, | | | | radiation, | | | | and | | | | convectio | | | | n | | | | | | | #### Physical Science Performance Descriptors | | High school students performing at the advanced level: | | | |------------|---|--|--| | | predict the type of bonds formed as elements combine; | | | | | balance chemical equations involving polyatomic ions; | | | | Advanced | analyze and solve a problem involving velocity, acceleration, force, work, energy, or power; | | | | | construct or design a model that illustrates the Law of Conservation of Energy to show energy changes | | | | | from potential to kinetic in doing work; | | | | | describe electrical effects in terms of motion and concentrations of charged particles. | | | | | High school students performing at the proficient level: | | | | | use the Periodic Table to determine the properties of elements and the ways they combine; | | | | | • given a variable, predict whether reactions will speed up or slow down as conditions change; | | | | | balance simple chemical equations; | | | | | describe chemical, physical, and nuclear changes at the atomic and macroscopic levels; | | | | Proficient | calculate velocity, acceleration, force, work, energy, and power given the formulas; | | | | | • given the forces acting on an object, predict its motion using Newton's Laws; | | | | | apply the Law of Conservation of energy to show energy changes from potential to kinetic in doing | | | | | work; | | | | | describe how characteristics of waves are related to one another; | | | | | describe electrical effects in terms of motion and concentrations of charged particles. | | | | | High school students performing at the basic level: | | | | | • use the Periodic Table to determine the properties of the 1 st 18 elements; | | | | | provide the coefficients for an unbalanced synthesis or decomposition equation; | | | | D! - | identify chemical and physical changes at the macroscopic level; | | | | Basic | calculate velocity and force given the formulas; | | | | | • given an example, identify which of Newton's Laws is illustrated; | | | | | • identify the characteristics of waves; | | | | | identify electricity as movement of charged particles. | | | #### Core High School Nature of Science Standards, Supporting Skills, Assessments, and Resources Indicator 1: Understand the nature and origin of scientific knowledge. | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|--|---|-------------|---------------| | (Evaluation) | 9-12.N.1.1. Students are able to evaluate a scientific discovery to determine and describe how societal, cultural, and personal beliefs influence scientific investigations and interpretations. | Types of Investigations pure research vs. applied research Examples: telescope, birth control pill, penicillin, electricity Recognize scientific knowledge is not merely a set of static facts but is dynamic and affords the best current explanations. Examples: spontaneous generation, relativity, geologic time Discuss how progress in science can be affected by social issues. | | Chapter 1 & 2 | Indicator 2: Apply the skills necessary to conduct scientific investigations. | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|---|---|-------------|---------------| | Level (Synthesis) | 9-12.N.2.1. Students are able to apply science process skills to design and conduct student investigations. Identify the questions and concepts to guide the development of hypotheses. Analyze primary sources of information to guide the development of the procedure. Select and use appropriate instruments to extend observations and measurements. Pavise explanations | Scientific Method Systematic Approach observation (qualitative vs. quantitative) hypothesis experiments (independent vs. dependent variable vs. control) conclusion representing data graphs bar vs. circle vs. line line graphs | | Chapter 1 & 2 | | | Revise explanations and models based on evidence and logic. Use technology and mathematic skills to | inne graphs interpreting graphs investigation Density (accuracy vs. | | | | | enhance investigations,
communicate results,
and defend
conclusions. | precision) - open-ended density | | |---------------|---|---------------------------------|---------------| | | Examples: | | | | | Computer-based data collection | | | | | Graphical analysis and representation | | | | | Use appropriate technology to display data (i.e. spreadsheets, PowerPoint, web). | | | | | 9-12.N.2.2. Students are able to practice safe and effective laboratory techniques. | Lab safety | Chapter 1 & 2 | | | Handle hazardous materials properly. | | | | (Application) | Use safety equipment correctly. | | | | | Practice emergency procedure. | | | | | Wear appropriate attire. | | | | Practice safe behaviors. | | | | |--------------------------|--|--|--| |--------------------------|--|--|--| ### Core High School Nature of Science Performance Descriptors | | High school students performing at the advanced level: | |------------|---| | Advanced | • given a scientific discovery, evaluate how different societal, cultural, and personal beliefs influenced | | Auvanceu | the investigation and its interpretation; | | | design and conduct an investigation using an alternative student- developed hypothesis. | | | High school students performing at the proficient level: | | | • given a scientific discovery narrative, determine and describe how societal, cultural, and personal | | Proficient | beliefs influenced the investigation and its interpretation; | | | describe the role of observation and evidence in the development and modification of hypotheses, | | | theories, and laws; then apply science process skills to design and conduct student investigations. | | | High school students performing at the basic level: | | | describe the role of observation in the development of hypotheses, theories, and laws and conduct | | Basic | student investigations; | | | • given a scientific discovery narrative, identify the cultural and personal beliefs that influenced the | | | investigation. | # Core High School Science, Technology, Environment, and Society Standards, Supporting Skills, and Examples Indicator 1: Analyze various implications/effects of scientific advancement within the environment and society. | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|---|---|-------------|-----------| | | 9-12.S.1.1. Students are able to explain ethical roles and responsibilities of scientists and scientific research. Examples: | Units of Measurement SI units Base units Derived units | | Chapter 1 | | (Application) | Sharing of data Accuracy of data Acknowledgement of sources Following laws Animal research Human research Managing hazardous materials and wastes | density temperature Kelvin vs. Celsius Scientific Notation Addition/subtraction with scientific notation Multiplication/division with scientific notation dimensional analysis reliability of measurements precision vs. Accuracy | | | | | | percent error significant figures rounding numbers | |--------------|---|--| | | 9-12.S.1.2. Students are able to evaluate and describe the impact of scientific discoveries on historical events and social, economic, and ethical issues. | | | (Evaluation) | Examples: cloning, stem cells, gene splicing, nuclear power, patenting new life forms, emerging diseases, AIDS, resistant forms of bacteria, biological and chemical weapons, global warming, and alternative fuels | | ## Indicator 2: Analyze the relationships/interactions among science, technology, environment, and society. | Bloom's
Taxonomy
Level | Standard | Supporting Skills | Assessments | Resources | |------------------------------|-------------------------------|--------------------------|-------------|---------------| | (F. 1. (*) | 9-12.S.2.1. Students are able | Benefits of Chemistry | | Chapter 1 & 2 | | (Evaluation) | to describe immediate and | Examples: environmental, | | | | | long-term consequences of potential solutions for technological issues. | communication, internet, entertainment, construction, manufacturing, power and transportation, energy sources, health technology, and biotechnology issues • Describe how the pertinent technological system operates. | | |-------------|--|---|--| | | 0.40.00.00 | Example: waste management facility | | | | 9-12.S.2.2. Students are able to analyze factors that could limit technological design. | | | | (Analysis) | Examples: ethics,
environmental impact,
manufacturing processes,
operation, maintenance,
replacement, disposal, and
liability | | | | (Synthesis) | 9-12.S.2.3. Students are able to analyze and describe the benefits, limitations, cost, and consequences involved in using, conserving, or recycling resources. | Examples: mining, agriculture, medicine, school science labs, forestry, energy, disposable diapers, computers, tires | | ### Core High School Science Technology, Environment, and Society Performance Descriptors | | High school students performing at the advanced level: | | | |------------|--|--|--| | Advanced | modify a technology taking into consideration limiting factors of design; | | | | | given a narrative of a scientific discovery, defend a position on the impact of the ethical issues. | | | | | High school students performing at the proficient level: | | | | | given a narrative of a scientific discovery, identify and evaluate the immediate and long-term
consequences of scientific issues; | | | | Proficient | identify and explain ethical roles and responsibilities of scientists conducting a given research project.; evaluate factors that could limit technological design; | | | | | • given a narrative description of a resource, analyze and describe the benefits, limitations, cost, and consequences involved in its use, conservation, or recycling. | | | | | High school students performing at the basic level: | | | | | • given a narrative of a scientific discovery, identify the immediate consequences of scientific issues; | | | | Basic | identify ethical roles and responsibilities concerning a given research project; | | | | Dasic | • identify factors that could limit technological design; | | | | | • given a narrative description of a resource, describe a benefit and limitation involved in its use, conservation, or recycling. | | |