Advanced High School Physical Science - Chemistry (one year) Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Describe structures and properties of, and changes in, matter

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Analysis)	 9-12.P.1.1. Students are able to use the Periodic Table to determine the atomic structure of elements, valence number, family relationships, and regions (metals, nonmetals, and metalloids). Determine protons, neutrons, electrons, mass number, and atomic number from the Periodic Table. Determine the number of valence electrons for elements in the main (s&p) blocks of the Periodic Table. Identify the relative 	 Early Theories of Matter Early Philosophers John Dalton Defining the Atom Subatomic Particles and the Nuclear Atom Discovering the electron The nuclear atom How Atoms Differ Atomic number Isotopes and mass number Mass of individual atoms Development of the modern Periodic Table History of the Periodic Table 		Chapter 4 Chapter 6

metallic character of	Development	
an element based on its location on the	- Newland	
Periodic Table.	- Meyer Mendevleev	
	- Moseley	
	Modern Periodic Table	
	- Classifying Elements	
	Group (family)	
	-Alkali	
	-Alkaline Earth	
	-Halogen	
	-Noble Gases	
	Metal vs. Nonmetal	
	Representative vs. Transition	
	Transition vs. Inner Transition	
	-Lanthanide vs. Actinide	
	Classifications of Elements	
	Organize elements by configuration	Chapter 6
	- Valance Electrons	
	- Valance Electrons and Perios	
	- Valence Electrons and	

		Group Numbers Periodic Trends • Atomic Radius -period vs. group trend • Ionic Radius -period vs. group trend • Ionization energy - period vs. group trend • Electronegativity - period vs. group trend	
(Comprehension)	 9-12.P.1.2. Students are able to describe ways that atoms combine. Name and write formulas for binary ionic and covalent compounds. Example: sodium 	Forming Chemical Bonds	Chapter 8 & 9

chloride (NaCl), carbon dioxide (CO ₂) • Compare the roles of electrons in covalent, ionic, and metallic bonding. • Discuss the special nature of carbon covalent bonds.	 Properties of Ionic Bonds energy and the Ionic Bond Names and formulas for Ionic Compounds formulas for Ionic compounds determine the charge		
--	--	--	--

Naming binary molecular	
compounds	
Naming acids	
- binary	
- ternary or oxyacids	
Writing formulas from names	
Forces of Attraction	
Intramolecular Forces	
- ionic	
- covalent	
- metallic	Chapter 13
Intermolecular Forces	
- Dispersion Force (London Forces)	
- Dipole-Dipole	
- Hydrogen Bonds	
Liquids and Solids	
• Liquids	
- density and comopession	
- fluidity	
- viscosity	

- viscosity and temp
- surface tension
- capillary action
Solids
• density
crystalline solids
- unit cells
simple vs. body-centered vs. Face centered
molecular solids
covalent network solids
• ionic solids
metallic solids
Phase Changes
endothermic phase changes
- melting
- vaporization
- sublimation
exothermic phase changes
- condensation
sublimationexothermic phase changes

		- deposition	
		- freezing	
		phase diagram	
	9-12.P.1.3. Students are	Classifying shamical reactions	Chapter 10
	able to predict whether	Classifying chemical reactions	Chapter 10
	reactions will speed up or	synthesis reaction	
	slow down as conditions	 combustion reaction 	
(Application)	change.	 decomposition reaction 	
	Examples:	replacement reactions	
	temperature, concentration, surface	- single vs. double	
	area, and catalysts	Rate of reaction factors	
	9-12.P.1.4. Students are	Reaction and Equations	Chapter 10
	able to balance chemical	_	Chapter 10
	equations by applying the	 evidence of chemical reactions 	
	Law of Conservation of	representing chemical	
(Application)	Matter.	reactions	
	• Trace number of	- word equation	
	particles in diagrams and	- skeleton equation	
	pictures of balanced	- chemical equation	

	equations.	balancing chemical equations		
	Example: Write out an equation with symbols: Mg + 2HCL → MgCl ₂ + 2H ₂	conversation of mass	Cha	apter 3
	9-12.P.1.5. Students are able to distinguish among chemical, physical, and nuclear changes.	Properties of Matter • Pure substances - element vs. compound	Ch	apter 3
(Comprehension)	 Differentiate between physical and chemical properties used to describe matter. Identify key indicators of chemical and physical changes. 	 physical properties of matter intensive vs. extensive chemical properties of matter observing properties of matter states of matter gas vs. liquid vs. solid Changes in Matter 		
	Describe the effects of changing pressure, volume, or temperature upon gases.	 physical changes chemical changes evidence of chemical reaction 		
	Identify characteristics of a solution and factors	Mixtures of Matter		

• explain the behavior of gases

lovy donaity
- low density
- compession and expansion
- diffusion vs. effusion
Graham's Law of Effusion
Gas Pressure
- measuring air pressure
-Barometer vs. manometer
- units of pressure
- Dalton's Law of Partial Pressure
Unstable Nuclei and radioactive Decay
Radioactivity
Types of radiation
- Alpha Radiation
- Beta Radiation
- Gamma Radiation
- Nuclear Stability
Nuclear Radiation
Discovery of radioactivity
Types of radiation

- Alpha
- Beta
- Gamma
Radioactive Decay
Nuclear Stability
Types of Radioactive Decay
- Alpha
- Beta
- Gamma
- Positron Emission
- Electron Capture
writing and balancing nuclear equations
Radioactive Series
Transmutation
induced transmutation
radioactive decay rates
radioactive dating
Fission and Fusion
nuclear reactions and energy
nuclear reactions and energy

nuclear fission
nuclear reactor
nuclear fusion
Applications and effects of Nuclear Reactions
detecting radioactivity
uses of radiation
biological effects of radiation

Indicator 3: Analyze interactions of energy and matter.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Application)	9-12.P.3.1. Students are able to describe the relationships among potential energy, kinetic energy, and work as applied to the Law of	States of Matter - Kinetic Theory - Thermal Energy - Average Kinetic Energy		Chapter 16

Conservation of Energy.	Thermal Expansion	
Describe how	Solid or Liquid?	
energy can be transferred and	- Amorphous Solid vs. Liquid	
transformed to	Crystals	
produce useful	How thermal energy affects matter	
work.	Properties of fluids	
Examples:	- Archimede's Principle	
Diagram simple energy transfers,	- Pascal's Principle	
describing the objects and the forms of energy gained and lost.	- Bernoulli's Principle	
Use simple machines as an example of the transmission of energy.		
Given the formulas, calculate the mechanical advantage and efficiency of selected systems.		
Explain methods of heat transfer.		
Examples:		

conductio		
n,		
radiation,		
and		
convectio		
n		

Physical Science Performance Descriptors

	High school students performing at the advanced level:		
	 predict the type of bonds formed as elements combine; 		
	 balance chemical equations involving polyatomic ions; 		
Advanced	 analyze and solve a problem involving velocity, acceleration, force, work, energy, or power; 		
	 construct or design a model that illustrates the Law of Conservation of Energy to show energy changes 		
	from potential to kinetic in doing work;		
	 describe electrical effects in terms of motion and concentrations of charged particles. 		
	High school students performing at the proficient level:		
	 use the Periodic Table to determine the properties of elements and the ways they combine; 		
	• given a variable, predict whether reactions will speed up or slow down as conditions change;		
	balance simple chemical equations;		
	 describe chemical, physical, and nuclear changes at the atomic and macroscopic levels; 		
Proficient	 calculate velocity, acceleration, force, work, energy, and power given the formulas; 		
	• given the forces acting on an object, predict its motion using Newton's Laws;		
	apply the Law of Conservation of energy to show energy changes from potential to kinetic in doing		
	work;		
	 describe how characteristics of waves are related to one another; 		
	 describe electrical effects in terms of motion and concentrations of charged particles. 		
	High school students performing at the basic level:		
	• use the Periodic Table to determine the properties of the 1 st 18 elements;		
	 provide the coefficients for an unbalanced synthesis or decomposition equation; 		
D! -	 identify chemical and physical changes at the macroscopic level; 		
Basic	 calculate velocity and force given the formulas; 		
	• given an example, identify which of Newton's Laws is illustrated;		
	• identify the characteristics of waves;		
	identify electricity as movement of charged particles.		

Core High School Nature of Science Standards, Supporting Skills, Assessments, and Resources

Indicator 1: Understand the nature and origin of scientific knowledge.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(Evaluation)	9-12.N.1.1. Students are able to evaluate a scientific discovery to determine and describe how societal, cultural, and personal beliefs influence scientific investigations and interpretations.	 Types of Investigations pure research vs. applied research Examples: telescope, birth control pill, penicillin, electricity Recognize scientific knowledge is not merely a set of static facts but is dynamic and affords the best current explanations. Examples: spontaneous generation, relativity, geologic time Discuss how progress in science can be affected by social issues. 		Chapter 1 & 2

Indicator 2: Apply the skills necessary to conduct scientific investigations.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
Level (Synthesis)	 9-12.N.2.1. Students are able to apply science process skills to design and conduct student investigations. Identify the questions and concepts to guide the development of hypotheses. Analyze primary sources of information to guide the development of the procedure. Select and use appropriate instruments to extend observations and measurements. Pavise explanations 	Scientific Method Systematic Approach observation (qualitative vs. quantitative) hypothesis experiments (independent vs. dependent variable vs. control) conclusion representing data graphs bar vs. circle vs. line line graphs		Chapter 1 & 2
	 Revise explanations and models based on evidence and logic. Use technology and mathematic skills to 	 inne graphs interpreting graphs investigation Density (accuracy vs. 		

	enhance investigations, communicate results, and defend conclusions.	precision) - open-ended density	
	Examples:		
	Computer-based data collection		
	Graphical analysis and representation		
	Use appropriate technology to display data (i.e. spreadsheets, PowerPoint, web).		
	9-12.N.2.2. Students are able to practice safe and effective laboratory techniques.	Lab safety	Chapter 1 & 2
	 Handle hazardous materials properly. 		
(Application)	 Use safety equipment correctly. 		
	Practice emergency procedure.		
	Wear appropriate attire.		

Practice safe behaviors.			
--------------------------	--	--	--

Core High School Nature of Science Performance Descriptors

	High school students performing at the advanced level:
Advanced	• given a scientific discovery, evaluate how different societal, cultural, and personal beliefs influenced
Auvanceu	the investigation and its interpretation;
	 design and conduct an investigation using an alternative student- developed hypothesis.
	High school students performing at the proficient level:
	• given a scientific discovery narrative, determine and describe how societal, cultural, and personal
Proficient	beliefs influenced the investigation and its interpretation;
	 describe the role of observation and evidence in the development and modification of hypotheses,
	theories, and laws; then apply science process skills to design and conduct student investigations.
	High school students performing at the basic level:
	 describe the role of observation in the development of hypotheses, theories, and laws and conduct
Basic	student investigations;
	• given a scientific discovery narrative, identify the cultural and personal beliefs that influenced the
	investigation.

Core High School Science, Technology, Environment, and Society Standards, Supporting Skills, and Examples

Indicator 1: Analyze various implications/effects of scientific advancement within the environment and society.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
	9-12.S.1.1. Students are able to explain ethical roles and responsibilities of scientists and scientific research. Examples:	 Units of Measurement SI units Base units Derived units 		Chapter 1
(Application)	Sharing of data Accuracy of data Acknowledgement of sources Following laws Animal research Human research Managing hazardous materials and wastes	 density temperature Kelvin vs. Celsius Scientific Notation Addition/subtraction with scientific notation Multiplication/division with scientific notation dimensional analysis reliability of measurements precision vs. Accuracy 		

		 percent error significant figures rounding numbers
	9-12.S.1.2. Students are able to evaluate and describe the impact of scientific discoveries on historical events and social, economic, and ethical issues.	
(Evaluation)	Examples: cloning, stem cells, gene splicing, nuclear power, patenting new life forms, emerging diseases, AIDS, resistant forms of bacteria, biological and chemical weapons, global warming, and alternative fuels	

Indicator 2: Analyze the relationships/interactions among science, technology, environment, and society.

Bloom's Taxonomy Level	Standard	Supporting Skills	Assessments	Resources
(F. 1. (*)	9-12.S.2.1. Students are able	Benefits of Chemistry		Chapter 1 & 2
(Evaluation)	to describe immediate and	Examples: environmental,		

	long-term consequences of potential solutions for technological issues.	communication, internet, entertainment, construction, manufacturing, power and transportation, energy sources, health technology, and biotechnology issues • Describe how the pertinent technological system operates.	
	0.40.00.00	Example: waste management facility	
	9-12.S.2.2. Students are able to analyze factors that could limit technological design.		
(Analysis)	Examples: ethics, environmental impact, manufacturing processes, operation, maintenance, replacement, disposal, and liability		
(Synthesis)	9-12.S.2.3. Students are able to analyze and describe the benefits, limitations, cost, and consequences involved in using, conserving, or recycling resources.	Examples: mining, agriculture, medicine, school science labs, forestry, energy, disposable diapers, computers, tires	

Core High School Science Technology, Environment, and Society Performance Descriptors

	High school students performing at the advanced level:		
Advanced	 modify a technology taking into consideration limiting factors of design; 		
	 given a narrative of a scientific discovery, defend a position on the impact of the ethical issues. 		
	High school students performing at the proficient level:		
	 given a narrative of a scientific discovery, identify and evaluate the immediate and long-term consequences of scientific issues; 		
Proficient	 identify and explain ethical roles and responsibilities of scientists conducting a given research project.; evaluate factors that could limit technological design; 		
	• given a narrative description of a resource, analyze and describe the benefits, limitations, cost, and consequences involved in its use, conservation, or recycling.		
	High school students performing at the basic level:		
	• given a narrative of a scientific discovery, identify the immediate consequences of scientific issues;		
Basic	 identify ethical roles and responsibilities concerning a given research project; 		
Dasic	• identify factors that could limit technological design;		
	• given a narrative description of a resource, describe a benefit and limitation involved in its use, conservation, or recycling.		