Science

Brunswick School Department Physics: Honors One and Two Dimensional Kinematics (Including Vectors)

	Two Dimensional Kinematics (including vectors)
Essential Understandings	 <u>Conceptual</u>: The reoccurring fundamental principles elaborated in physics have uses and implications in every dimension of modern life. Physics seeks to analyze and understand every system as a demonstration of the cause-effect relationship. <u>Computational</u>: Physics quantifies each variable of a system in order to describe, analyze and understand it. A variety of problem solving techniques make use of a system's quantities to investigate the conceptual relationships evidenced within the system. Numerical problem solving is an essential component in developing a clear understanding of the conceptual relationships identified within any system.
Essential Questions	 What is the difference between distance and displacement? How is acceleration a rate of a rate? How do scalars and vectors compare and contrast? Why is the path of any projectile parabolic? How does launch angle determine height and range?
Essential Knowledge	 Instantaneous velocity is the average velocity as the time interval approaches zero. Acceleration due to gravity is one of the only constant accelerations. Vectors can represent any quantity with magnitude and direction. In projectile motion, the horizontal and the vertical components of position, velocity and acceleration are considered independently.
Vocabulary	 <u>Terms</u>: kinematics, displacement, velocity, instantaneous velocity, acceleration, free fall, vector, unit vectors, relative motion, projectile motion
Essential Skills	 Use the equations of motion to solve complex numerical problems. Solve free fall problems using motion equations. Add vectors graphically. Add vectors using components. Describe acceleration, velocity, displacement and position using vectors. Solve motion problems using vectors. Use trigonometry to solve two dimensional motion problems. Determine the range and height of a projectile.

Science

Brunswick School Department Physics: Honors One and Two Dimensional Kinematics (Including Vectors)

	Science and Technology
	A. Unifying Themes
	A1.Systems
	Students apply an understanding of systems to explain and
	analyze man-made and natural phenomena.
	a. Analyze a system using the principles of boundaries,
	subsystems, inputs, outputs, feedback, or the system's
	relation to other systems and design solutions to a system
	problem.
	A3.Constancy and Change
	Students identify and analyze examples of constancy and
	change that result from varying types and rates of change in
	physical, biological, and technological systems with and without
	counterbalances.
	C. The Scientific and Technological Enterprises
	C2.Understandings About Science and Technology
	Students explain how the relationship between scientific inquiry
	and technological design influences the advancement of ideas,
Related	products, and systems.
Maine Learning	 Provide an example that shows how science advances with
Results	the introduction of new technologies and how solving
	technological problems often impacts new scientific
	knowledge.
	b. Provide examples of how creativity, imagination, and a good
	knowledge base are required to advance scientific ideas and
	technological design.
	c. Provide examples that illustrate how technological solutions
	to problems sometimes lead to new problems or new fields
	of inquiry.
	······································

Science

Brunswick School Department Physics: Honors One and Two Dimensional Kinematics (Including Vectors)

	D. The Physical Setting
	D4.Force and Motion
	Students understand that the laws of force and motion are the
	same across the universe.
	a. Describe the contribution of Newton to our understanding of
	force and motion, and give examples of and apply Newton's
	three laws of motion and his theory of gravitation.
Related	b. Explain and apply the ideas of relative motion and frame of
Maine Learning	reference.
Results	c. Describe the relationship between electric and magnetic
	fields and forces, and give examples of how this relationship
	is used in modern technologies.
	d. Describe and apply characteristics of waves including
	wavelength, frequency, and amplitude.
	e. Describe and apply an understanding of how waves interact
	with other waves, and with materials including reflection,
	refraction, and absorption.
	f. Describe kinetic energy (the energy of motion), potential
	energy (dependent on relative position), and energy
	contained by a field (including electromagnetic waves) and
	apply these understandings to energy problems.
	 Read the text book and complete the examples presented
	 Individually answer conceptual questions and solve problems
Sample	 Collectively discuss the answers and solutions in class
Lessons	 Discuss real world examples of concepts presented in the textbook
And	and encountered in the real world
Activities	 Pasco Data Studio Motion Match laboratory
Commis	 Design and build a projectile launcher and calculate its range
Sample	 Homework assignments. Assess understanding in elegeroom discussions
Classroom Assessment	 Assess understanding in classroom discussions. Laboratory reports
Methods	 Laboratory reports Written formative and summative assessments with real world
INICLIIUUS	conceptual guestions and numerical problems
	 Publications:
	 Physics, second edition - James S. Walker
Sample	 Videos:
Resources	 Mechanical Universe Video Series
	 Other Resource:
	 Companion Website: <u>http://physics.prenhall.com/walker</u>
	 Physics Demonstrations in Mechanics